11,752 research outputs found
Reply to Comment by D. Spemann et al [EPL 98 (2012) 57006, arXiv:1204.2992]
This article is a reply to the Comment by D. Spemann et al (arXiv:1204.2992)
in response to our paper 'Revealing common artifacts due to ferromagnetic
inclusions in highly oriented pyrolytic graphite' (EPL, 97 (2012) 47001).Comment: Reply to arXiv:1204.2992 Comment by D. Spemann et al re
arXiv:1201.6374 by Sepioni et a
Biexciton recombination rates in self-assembled quantum dots
The radiative recombination rates of interacting electron-hole pairs in a
quantum dot are strongly affected by quantum correlations among electrons and
holes in the dot. Recent measurements of the biexciton recombination rate in
single self-assembled quantum dots have found values spanning from two times
the single exciton recombination rate to values well below the exciton decay
rate. In this paper, a Feynman path-integral formulation is developed to
calculate recombination rates including thermal and many-body effects. Using
real-space Monte Carlo integration, the path-integral expressions for realistic
three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are
evaluated, including anisotropic effective masses. Depending on size, radiative
rates of typical dots lie in the regime between strong and intermediate
confinement. The results compare favorably to recent experiments and
calculations on related dot systems. Configuration interaction calculations
using uncorrelated basis sets are found to be severely limited in calculating
decay rates.Comment: 11 pages, 4 figure
Unimpeded permeation of water through helium-leak-tight graphene-based membranes
Permeation through nanometer pores is important in the design of materials
for filtration and separation techniques and because of unusual fundamental
behavior arising at the molecular scale. We found that submicron-thick
membranes made from graphene oxide can be completely impermeable to liquids,
vapors and gases, including helium, but allow unimpeded permeation of water
(H2O permeates through the membranes at least 10^10 times faster than He). We
attribute these seemingly incompatible observations to a low-friction flow of a
monolayer of water through two dimensional capillaries formed by closely spaced
graphene sheets. Diffusion of other molecules is blocked by reversible
narrowing of the capillaries in low humidity and/or by their clogging with
water
Fuzzy spaces and new random matrix ensembles
We analyze the expectation value of observables in a scalar theory on the
fuzzy two sphere, represented as a generalized hermitian matrix model. We
calculate explicitly the form of the expectation values in the large-N limit
and demonstrate that, for any single kind of field (matrix), the distribution
of its eigenvalues is still a Wigner semicircle but with a renormalized radius.
For observables involving more than one type of matrix we obtain a new
distribution corresponding to correlated Wigner semicircles.Comment: 12 pages, 1 figure; version to appear in Phys. Rev.
Multifractality in combustion noise: predicting an impending combustion instability
The transition in dynamics from low-amplitude, aperiodic, combustion noise to high-amplitude, periodic, combustion instability in confined, combustion environments was studied experimentally in a laboratory-scale combustor with two different flameholding devices in a turbulent flow field. We show that the low-amplitude, irregular pressure fluctuations acquired during stable regimes, termed ‘combustion noise’, display scale invariance and have a multifractal signature that disappears at the onset of combustion instability. Traditional analysis often treats combustion noise and combustion instability as acoustic problems wherein the irregular fluctuations observed in experiments are often considered as a stochastic background to the dynamics. We demonstrate that the irregular fluctuations contain useful information of prognostic value by defining representative measures such as Hurst exponents that can act as early warning signals to impending instability in fielded combustors
Sterols and sterolins in Hypoxis hemerocallidea (African potato)
Commercially available health supplements and herbal remedies containing sterols and sterolins, either from African potato (Hypoxis hemerocallidea) alone, or whether enriched with sterols and sterolins, are claimed to be efficacious in the treatment of a variety of ailments. Sterols and sterolins in African potato are purported to be the relevant constituents that are required for the therapeutic claims of such products. A patent describing the extraction of sterolins from African potato plant material has claimed that approximately 9 mg sterolins can be isolated from 100 g of an enriched aqueous African potato extract. Our analysis of African potato plant material and its sterol and sterolin content, when similarly prepared, shows that the measureable content of sterols and sterolins in African potato is far less than the amounts of these compounds that have been claimed to be necessary for therapeutic benefit. We conclude that therapeutic claims relating to sterol and sterolin content in African potato are unsubstantiated, in view of the extremely low content of such compounds that we have isolated from our plant material, and in products containing African potato, or extracts thereof
General Results on Glueball Masses in QCD
A number of authors have investigated mass inequalities for mesons and baryons in QCD. These provide rigorous nonperturbative constraints on the mass spectrum. Similar inequalities for glueballs are investigated. For nonzero spin J, in the large-Nc approximation, mJ - ⩾ mJ+ is found. (For J = 0, the existence of a gluon condensate can modify this statement.) There are also constraints on how fast mJ can grow with J. For example, for mJ = a + bJα, 0 ⩽ α ⩽ 1 is found, a result consistent with Regge behaviour
Revealing common artifacts due to ferromagnetic inclusions in highly-oriented pyrolytic graphite
We report on an extensive investigation to figure out the origin of
room-temperature ferromagnetism that is commonly observed by SQUID magnetometry
in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray
microanalysis revealed the presence of micron-size magnetic clusters
(predominantly Fe) that are rare and would be difficult to detect without
careful search in a scanning electron microscope in the backscattering mode.
The clusters pin to crystal boundaries and their quantities match the amplitude
of typical ferromagnetic signals. No ferromagnetic response is detected in
samples where we could not find such magnetic inclusions. Our experiments show
that the frequently reported ferromagnetism in pristine HOPG is most likely to
originate from contamination with Fe-rich inclusions introduced presumably
during crystal growth.Comment: 8 pages, 7 figure
- …