14 research outputs found

    Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The four casein proteins in goat milk are encoded by four closely linked casein loci (<it>CSN1S1</it>, <it>CSN2</it>, <it>CSN1S2 </it>and <it>CSN3</it>) within 250 kb on caprine chromosome 6. A deletion in exon 12 of <it>CSN1S1</it>, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant's effect.</p> <p>Methods</p> <p>In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects.</p> <p>Results</p> <p>Significant additive effects of single SNP within <it>CSN1S1 </it>and <it>CSN3 </it>were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially.</p> <p>Conclusions</p> <p>The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population.</p

    Nordic Blue Parks : Nordic perspectives on underwater natural and cultural heritage

    No full text
    How can natural and cultural values be a resource for sustainable development? That is the question the Nordic Blue Parks project has tried to answer by providing case-studies of regional and local success stories, thereby assessing the possible synergistic effects of cross-sectoral working with both nature- and cultural heritage bodies. Nordic Blue Parks is a new concept that combines underwater nature and cultural trails in four Nordic countries, i.e. Finland, Sweden, Norway and Denmark.The Nordic Blue Parks project has created an international forum to foster ties not only between the various groups working regionally on this project, but also to engender links between the general public and their own cultural and natural resources. Through this project both natural and cultural administrations from several Nordic countries have for the first time cooperated concerning the underwater environment. The Nordic Blue Parks project ably integrates components of sustainable development and provides new economic possibilities to develop local natural tourism, international cooperation, education and research, as well as cultural identity

    A system-theoretical approach to selective grid coarsening of reservoir models

    Get PDF
    From a system-theoretical point of view and for a given configuration of wells, there are only a limited number of degrees of freedom in the input–output dynamics of a reservoir system. This means that a large number of combinations of the state variables (pressure and saturation values) are not actually controllable and observable from the wells, and accordingly, they are not affecting the input–output behavior of the system. In an earlier publication, we therefore proposed a control-relevant upscaling methodology that uniformly coarsens the reservoir. Here, we present a control-relevant selective (i.e. non-uniform) coarsening (CRSC) method, in which the criterion for grid size adaptation is based on ranking the grid block contributions to the controllability and observability of the reservoir system. This multi-level CRSC method is attractive for use in iterative procedures such as computer-assisted flooding optimization for a given configuration of wells. In contrast to conventional flow-based coarsening techniques our method is independent of the specific flow rates or pressures imposed at the wells. Moreover the system-theoretical norms employed in our method provide tight upper bounds to the ‘input–output energy’ of the fine and coarse systems. These can be used as an a priori error-estimate of the performance of the coarse model. We applied our algorithm to two numerical examples and found that it can accurately reproduce results from the corresponding fine-scale simulations, while significantly speeding up the simulation.GeotechnologyCivil Engineering and Geoscience
    corecore