57 research outputs found

    General Results on Glueball Masses in QCD

    Full text link
    A number of authors have investigated mass inequalities for mesons and baryons in QCD. These provide rigorous nonperturbative constraints on the mass spectrum. Similar inequalities for glueballs are investigated. For nonzero spin J, in the large-Nc approximation, mJ - ⩾ mJ+ is found. (For J = 0, the existence of a gluon condensate can modify this statement.) There are also constraints on how fast mJ can grow with J. For example, for mJ = a + bJα, 0 ⩽ α ⩽ 1 is found, a result consistent with Regge behaviour

    Hadronic interactions, precocious unification, and cosmic ray showers at Auger energies

    Get PDF
    At Auger energies only model predictions enable us to extract primary cosmic ray features. The simulation of the shower evolution depends sensitively on the first few interactions, necessarily related to the quality of our understanding of high energy hadronic collisions. Distortions of the standard ``soft semi-hard'' scenario include novel large compact dimensions and a string or quantum gravity scale not far above the electroweak scale. Na\"{\i}vely, the additional degrees of freedom yield unification of all forces in the TeV range. In this article we study the influence of such precocious unification during atmospheric cascade developments by analyzing the most relevant observables in proton induced showers.Comment: 16 pages latex. 4 eps figure

    Neutrino-Induced Giant Air Showers in Large Extra Dimension Models

    Get PDF
    In models based on large extra dimensions where massive spin 2 exchange can dominate at high energies, the neutrino-proton cross section can rise to typical hadronic values at energies above 10^20 eV. The neutrino then becomes a candidate for the primary that initiates the highest energy cosmic ray showers. We investigate characteristics of neutrino-induced showers compared to proton-induced showers. The comparison includes study of starting depth, profile with depth, lateral particle distribution at ground and muon lateral distribution at ground level. We find that for cross sections above 20 mb there are regions of parameter space where the two types of showers are essentially indistinguishable. We conclude that the neutrino candidate hypothesis cannot be ruled out on the basis of shower characteristics.Comment: 24 pages, latex, 19 figures; text discussion and references added, typos corrected; figures and conclusions unchange

    Quantum power correction to the Newton law

    Full text link
    We have found the graviton contribution to the one-loop quantum correction to the Newton law. This correction results in interaction decreasing with distance as 1/r^3 and is dominated numerically by the graviton contribution. The previous calculations of this contribution to the discussed effect are demonstrated to be incorrect.Comment: 10 pages, 5 figures; numerical error corrected, few references adde

    Vanishing of cosmological constant in nonfactorizable geometry

    Get PDF
    We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times including the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton propagation in a general four dimensional background and find an explicit solution for a zero mass bound state of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the context of this model. We also show that the results of Randall and Sundrum can be generalized without any modification to the Schwarzschild background.Comment: 8 Pages(expanded version), Accepted in Phys. Rev.

    Geodesics, gravitons and the gauge fixing problem

    Full text link
    When graviton loops are taken into account, the background metric obtained as a solution to the one-loop corrected Einstein equations turns out to be gauge fixing dependent. Therefore it is of no physical relevance. Instead we consider a physical observable, namely the trajectory of a test particle in the presence of gravitons. We derive a quantum corrected geodesic equation that includes backreaction effects and is explicitly independent of any gauge fixing parameter.Comment: 21 pages, no figures, RevTe

    Classicalization of Gravitons and Goldstones

    Get PDF
    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role of entropy in it, as it illustrates, that much more prosaic scalar theories essentially do the same. Finally, it illustrates that in both cases classicalization is the defining property for unitarization, and that it sets-in before one can talk about accompanying properties, such as entropy and thermality of static classicalons (black holes). These properties are by-products of classicalization, and their equivalents can be defined for non-gravitational cases of classicalization.Comment: 23 page

    UV-Completion by Classicalization

    Full text link
    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal WW-bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.Comment: 37 page

    Effective Action for High-Energy Scattering in Gravity

    Full text link
    The multi-Regge effective action is derived directly from the linearized gravity action. After excluding the redundant field components we separate the fields into momentum modes and integrate over modes which correspond neither to the kinematics of scattering nor to the one of exchanged particles. The effective vertices of scattering and of particle production are obtained as sums of the contributions from the triple and quartic interaction terms and the fields in the effective action are defined in terms of the two physical components of the metric fluctuation.Comment: 15 pages, LATE

    One-loop graviton corrections to Maxwell's equations

    Full text link
    We compute the graviton induced corrections to Maxwell's equations in the one-loop and weak field approximations. The corrected equations are analogous to the classical equations in anisotropic and inhomogeneous media. We analyze in particular the corrections to the dispersion relations. When the wavelength of the electromagnetic field is much smaller than a typical length scale of the graviton two-point function, the speed of light depends on the direction of propagation and on the polarisation of the radiation. In the opposite case, the speed of light may also depend on the energy of the electromagnetic radiation. We study in detail wave propagation in two special backgrounds, flat Robertson-Walker and static, spherically symmetric spacetimes. In the case of a flat Robertson-Walker gravitational background we find that the corrected electromagnetic field equations correspond to an isotropic medium with a time-dependent effective refractive index. For a static, spherically symmetric background the graviton fluctuations induce a vacuum structure which causes birefringence in the propagation of light.Comment: 15 pages, revte
    corecore