1,570 research outputs found

    Angular distribution of high-energy e+ee^+e^- photoproduction close to the end of spectrum

    Full text link
    We consider the differential cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of the electron or positron spectrum. When the momentum transfer largely exceeds the electron mass, the cross section is obtained analytically in a compact form. Coulomb corrections essentially modify the cross section even for moderate values of the nuclear charge number ZZ. In the same kinematical region, the angular distribution for bound-free pair production, bremsstrahlung, and photorecombination is also obtained.Comment: 12 pages, 4 figure

    High-energy e+ee^+e^- photoproduction cross section close to the end of spectrum

    Full text link
    We consider the cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of electron or positron spectrum. We show that the cross section essentially differs from the result obtained in the Born approximation as well as form the result which takes into account the Coulomb corrections under assumption that both electron and positron are ultrarelativistic. The cross section of bremsstrahlung in a strong Coulomb field by a high-energy electron is also obtained in the region where the final electron is not ultrarelativistic.Comment: 20 pages, 4 figure

    The Induced Charge Generated By The Potential Well In Graphene

    Full text link
    The induced charge density, ρind(r)\rho_{ind}(\bm r), generated in graphene by the potential well of the finite radius RR is considered. The result for ρind(r)\rho_{ind}(\bm r) is derived for large distances rRr\gg R. We also obtained the induced charges outside of the radius rRr\gg R and inside of this radius for subcritical and supercritical regimes. The consideration is based on the convenient representation of the induced charge density via the Green's function of electron in the field.Comment: 12 pages, 2 figures, version published in Phys.Rev.

    Screening of Coulomb Impurities in Graphene

    Full text link
    We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb impurity, Ze/rZ|e|/r, in graphene. Our analysis is based on the exact electron Green's function, obtained by using the operator method, and leads to results that are exact in the parameter ZαZ\alpha, where α\alpha is the "fine structure constant" of graphene. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge ZeffZ_{eff}, determined by the localized induced charge. We find that an impurity with bare charge Z=1 remains subcritical, Zeffα<1/2Z_{eff} \alpha < 1/2, for any α\alpha, while impurities with Z=2,3Z=2,3 and higher can become supercritical at certain values of α\alpha.Comment: 4 pages, 2 figure

    Quasiclassical Green function in an external field and small-angle scattering

    Get PDF
    The quasiclassical Green functions of the Dirac and Klein-Gordon equations in the external electric field are obtained with the first correction taken into account. The relevant potential is assumed to be localized, while its spherical symmetry is not required. Using these Green functions, the corresponding wave functions are found in the approximation similar to the Furry-Sommerfeld-Maue approximation. It is shown that the quasiclassical Green function does not coincide with the Green function obtained in the eikonal approximation and has a wider region of applicability. It is illustrated by the calculation of the small-angle scattering amplitude for a charged particle and the forward photon scattering amplitude. For charged particles, the first correction to the scattering amplitude in the non-spherically symmetric potential is found. This correction is proportional to the scattering angle. The real part of the amplitude of forward photon scattering in a screened Coulomb potential is obtained.Comment: 20 pages, latex, 1 figur

    Ultrarelativistic quasiclassical wave functions in strong laser and atomic fields

    Full text link
    The problem of an ultrarelativistic charge in the presence of an atomic and a plane-wave field is investigated in the quasiclassical regime by including exactly the effects of both background fields. Starting from the quasiclassical Green's function obtained in [Phys. Lett. B \textbf{717}, 224 (2012)], the corresponding in- and out-wave functions are derived in the experimentally relevant case of the particle initially counterpropagating with respect to the plane wave. The knowledge of these electron wave functions opens the possibility of investigating a variety of problems in strong-field QED, where both the atomic field and the laser field are strong enough to be taken into account exactly from the beginning in the calculations.Comment: 24 pages, no figure
    corecore