9 research outputs found
Mechanised Rock Tunneling in Adverse Conditions
Several case histories are presented in order to highlight the way in which unexpected adverse geological conditions promote large delays in rock tunnelling. These are selected from tunnels which have been excavated by drill and blast, roadheader and fullface tunnel boring machines. In each case the important properties of rock affecting the progress rates obtained are identified together with the nature of the tunnelling problems encountered
The 2010 Hans Cloos lecture : the contribution of urban geology to the development, regeneration and conservation of cities
Urban geology began to develop in the 1950s, particularly in California in relation to land-use planning, and led to Robert Legget publishing his seminal book “Cities and geology” in 1973. Urban geology has now become an important part of engineering geology. Research and practice has seen the evolution from single theme spatial datasets to multi-theme and multi-dimensional outputs for a wide range of users. In parallel to the development of these new outputs to aid urban development, regeneration and conservation, has been the growing recognition that city authorities need access to extensive databases of geo-information that are maintained in the long-term and renewed regularly. A further key advance has been the recognition that, in the urban environment, knowledge and understanding of the geology need to be integrated with those of other environmental topics (for example, biodiversity) and, increasingly, with the research of social scientists, economists and others. Despite these advances, it is suggested that the value of urban geology is not fully recognised by those charged with the management and improvement of the world’s cities. This may be because engineering geologists have failed to adequately demonstrate the benefits of urban geological applications in terms of cost and environmental improvement, have not communicated these benefits well enough and have not clearly shown the long-term contribution of geo-information to urban sustainability. Within this context future actions to improve the situation are proposed
Effects of rock properties on specific cutting energy in linear cutting of sandstones by picks
Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones
Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool
The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones