1,075,591 research outputs found

    Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity

    Get PDF
    Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron emissivity in the Milky Way using a 3 dimensional dataset instead of LOS-integrated intensity maps on the sky. Using absorbed HII regions we can measure the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a 2 dimensional to a 3 dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models we can simulate the synchrotron emissivities and compare them to the observed values in the catalog. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way, or an emissivity drop near the Galactic center. State-of-the-art GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad-hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&

    Exponential versus linear amplitude decay in damped oscillators

    Full text link
    We comment of the widespread belief among some undergraduate students that the amplitude of any harmonic oscillator in the presence of any type of friction, decays exponentially in time. To dispel that notion, we compare the amplitude decay for a harmonic oscillator in the presence of (i) viscous friction and (ii) dry friction. It is shown that, in the first case, the amplitude decays exponentially with time while in the second case, it decays linearly with time.Comment: 3 pages, 1 figure, accepted in Phys. Teac

    On the infeasibility of entanglement generation in Gaussian quantum systems via classical control

    Full text link
    This paper uses a system theoretic approach to show that classical linear time invariant controllers cannot generate steady state entanglement in a bipartite Gaussian quantum system which is initialized in a Gaussian state. The paper also shows that the use of classical linear controllers cannot generate entanglement in a finite time from a bipartite system initialized in a separable Gaussian state. The approach reveals connections between system theoretic concepts and the well known physical principle that local operations and classical communications cannot generate entangled states starting from separable states.Comment: 6 pages, 3 figures. To appear in IEEE Transactions on Automatic Control, 201

    Sensitivity to the pion-nucleon coupling constant in partial-wave analyses of elastic pi-N and NN scattering and pion photoproduction

    Full text link
    We summarize results obtained in our studies of the pion-nucleon coupling constant. Several different techniques have been applied to pi-N and NN elastic scattering data, and the existing database for single-pion photoproduction. The most reliable determination comes from pi-N elastic scattering. The sensitivity in this reaction was found to be greater, by at least a factor of 3, when compared with analyses of NN elastic scattering or single-pion photoproduction.Comment: 10 pages, 1 figure. Talk given at the Uppsala workshop on the pion-nucleon coupling constan

    A New Class of Path Equations in AP-Geometry

    Full text link
    In the present work, it is shown that, the application of the Bazanski approach to Lagrangians, written in AP-geometry and including the basic vector of the space, gives rise to a new class of path equations. The general equation representing this class contains four extra terms, whose vanishing reduces this equation to the geodesic one. If the basic vector of the AP-geometry is considered as playing the role of the electromagnetic potential, as done in a previous work, then the second term (of the extra terms) will represent Lorentz force while the fourth term gives a direct effect of the electromagnetic potential on the motion of the charged particle. This last term may give rise to an effect similar to the Aharanov-Bohm effect. It is to be considered that all extra terms will vanish if the space-time used is torsion-less.Comment: 11 pages, LaTeX fil

    Optical orientation of electron spins in GaAs quantum wells

    Get PDF
    We present a detailed experimental and theoretical analysis of the optical orientation of electron spins in GaAs/AlAs quantum wells. Using time and polarization resolved photoluminescence excitation spectroscopy, the initial degree of electron spin polarization is measured as a function of excitation energy for a sequence of quantum wells with well widths between 63 Ang and 198 Ang. The experimental results are compared with an accurate theory of excitonic absorption taking fully into account electron-hole Coulomb correlations and heavy-hole light-hole coupling. We find in wide quantum wells that the measured initial degree of polarization of the luminescence follows closely the spin polarization of the optically excited electrons calculated as a function of energy. This implies that the orientation of the electron spins is essentially preserved when the electrons relax from the optically excited high-energy states to quasi-thermal equilibrium of their momenta. Due to initial spin relaxation, the measured polarization in narrow quantum wells is reduced by a constant factor that does not depend on the excitation energy.Comment: 12 pages, 9 figure

    The two types of Cherenkov gluons at LHC energies

    Get PDF
    Beside comparatively low energy Cherenkov gluons observed at RHIC, there could be high energy gluons at LHC, related to the high energy region of positive real part of the forward scattering amplitude. In both cases they give rise to particles emitted along some cone. The characteristics of the cones produced by these two types of gluons are different. Therefore different experiments are needed to detect them. The cosmic ray event which initiated this idea is described in detail.Comment: 6 pages, talk at IWCF2006, Hangzhou, Chin
    • …
    corecore