1,706 research outputs found

    Evolution of field early-type galaxies: The view from GOODS CDFS

    Get PDF
    We explore the evolution of field early-type galaxies in a sample extracted from the ACS images of the southern GOODS field. The galaxies are selected by means of a nonparametric analysis, followed by visual inspection of the candidates with a concentrated surface brightness distribution. We furthermore exclude from the final sample those galaxies that are not consistent with an evolution into the Kormendy relation between surface brightness and size that is observed for z = 0 ellipticals. The final set, which comprises 249 galaxies with a median redshift z(m) = 0.71, represents a sample of early-type systems not selected with respect to color, with similar scaling relations as those of bona fide elliptical galaxies. The distribution of number counts versus apparent magnitude rejects a constant number density with cosmic time and suggests a substantial decrease with redshift: n proportional to (1 + z)(-2.5). The majority of the galaxies (78%) feature passively evolving old stellar populations. One-third of those in the upper half of the redshift distribution have blue colors, in contrast to only 10% in the lower redshift subsample. An adaptive binning of the color maps using an optimal Voronoi tessellation is performed to explore the internal color distribution. We find that the red and blue early-type galaxies in our sample have distinct behavior with respect to the color gradients, so that most blue galaxies feature blue cores whereas most of the red early-types are passively evolving stellar populations with red cores, i.e., similar systems to local early-type galaxies. Furthermore, the color gradients and scatter do not evolve with redshift and are compatible with the observations at z 0, assuming a radial dependence of the metallicity within each galaxy. Significant gradients in the stellar age are readily ruled out. This work emphasizes the need for a careful sample selection, as we found that most of those galaxies that were visually classified as candidate early types-but then rejected based on the Kormendy relation-feature blue colors characteristic of recent star formation

    Coulomb Drag in the Exciton Regime in Electron-Hole Bilayers

    Full text link
    We report electrical transport measurements on GaAs/AlGaAs based electron-hole bilayers. These systems are expected to make a transition from a pair of weakly coupled two-dimensional systems to a strongly coupled exciton system as the barrier between the layers is reduced. Once excitons form, phenomena such as Bose-Einstein condensation of excitons could be observed. In our devices, electrons and holes are confined in double quantum wells, and carriers in the devices are induced with top and bottom gates leading to variable density in each layer. Separate contact to each layer allows Coulomb drag transport measurements where current is driven in one layer while voltage is measured in the other. Coulomb drag is sensitive to interlayer coupling and has been predicted to provide a strong signature of exciton condensation. Drag measurement on EHBLs with a 30 nm barrier are consistent with drag between two weakly coupled 2D Fermi systems where the drag decreases as the temperature is reduced. When the barrier is reduced to 20 nm, we observe a consistent increase in the drag resistance as the temperature is reduced. These results indicate the onset of a much stronger coupling between the electrons and holes which leads to exciton formation and possibly phenomena related to exciton condensation.Comment: 12 pages, 3 figure

    Piezoelectric mechanism of orientation of stripe structures in two-dimensional electron systems

    Full text link
    A piezoelectric mechanism of orientation of stripes in two-dimensional quantum Hall systems in GaAs heterostructures is considered. The anisotropy of the elastic moduli and the boundary of the sample are taken into account. It is found that in the average the stripes line up with the [110] axis. In double layer systems the wave vector of the stripe structure rotates from the [110] to [100] axis if the period of density modulation becomes large than the interlayer distance. From the experimental point of view it means that in double layer systems anisotropic part of resistivity changes its sign under variation of the external magnetic field.Comment: 8 page

    E-Tailing In India –An Overview

    Get PDF
    The online retail market has evolved and grown significantly over the past few years. The Indian retail market is witnessing a revolution. The growth of internet has enabled the newretailformatofthevirtualretailer to emerge and forced the existing retailers to consider e-tailing model of retailing as well. The Internet has changed the consumer’s shops in many ways not just in the digital domain, but also in the physical world. In the era of globalization, companies are using the internet technologies to reach out to valued customers and to provide a point of contact 24 hours a day, 7 days a week. In this paper, I have explained about an overview of e-tailing in India

    The Luminosity Function Of Field Galaxies And Its Evolution Since z=1

    Get PDF
    We present the B-band luminosity function and comoving space and luminosity densities for a sample of 2779 I-band selected field galaxies based on multi-color data from the CADIS survey. The sample is complete down to I_815 = 22 without correction and with completeness correction extends to I_815=23.0. By means of a new multi-color analysis the objects are classified according to their spectral energy distributions (SEDs) and their redshifts are determined with typical errors of delta z <= 0.03. We have split our sample into four redshift bins between z=0.1 and z=1.04 and into three SED bins E-Sa,Sa-Sc and starbursting (emission line) galaxies. The evolution of the luminosity function is clearly differential with SED. The normalization phi* of luminosity function for the E-Sa galaxies decreases towards higher redshift, and we find evidence that the comoving galaxy space density decreases with redshift as well. In contrast, we find phi* and the comoving space density increasing with redshift for the Sa-Sc galaxies. For the starburst galaxies we find a steepening of the luminosity function at the faint end and their comoving space density increases with redshift.Comment: 15 pages, 14 figures, accepted by Astronomy&Astrophysic

    2D Metal-Insulator transition as a percolation transition

    Full text link
    By carefully analyzing the low temperature density dependence of 2D conductivity in undoped high mobility n-GaAs heterostructures, we conclude that the 2D metal-insulator transition in this system is a density inhomogeneity driven percolation transition due to the breakdown of screening in the random charged impurity disorder background. In particular, our measured conductivity exponent of ∼1.4\sim 1.4 approaches the 2D percolation exponent value of 4/3 at low temperatures and our experimental data are inconsistent with there being a zero-temperature quantum critical point in our system.Comment: 5 pages, 3 figure

    The Gravitational Lens CFRS03.1077

    Get PDF
    An exquisite gravitational arc with a radius of 2.1" has been discovered around the z = 0.938 field elliptical galaxy CFRS03.1077 during HST observations of Canada-France Redshift Survey (CFRS) fields. Spectroscopic observations of the arc show that the redshift of the resolved lensed galaxy is z = 2.941. This gravitational lens-source system is well-fitted using the position angle and ellipticity derived from the visible matter distribution and an isothermal mass profile with a mass corresponding to sigma =387+-5 km/s. Surprisingly, given the evidence for passive evolution of elliptical galaxies, this is in good agreement with an estimate based on the fundamental plane for z = 0 ellipticals. This, perhaps, indicates that this galaxy has not shared in the significant evolution observed for average elliptical galaxies at z ~ 1. A second elliptical galaxy with similar luminosity from the CFRS survey, CFRS 14.1311 at z=0.807, is also a lens but in this case the lens model gives a much smaller mass-to-light ratio, i.e., it appears to confirm the expected evolution. This suggests that this pair of field elliptical galaxies may have very different evolutionary histories, a significant result if confirmed. Clearly, CFRS03.1077 demonstrates that these "Einstein rings" are powerful probes of high redshift galaxies.Comment: 11 pages, 5 figures, accepted by Ap.
    • …
    corecore