3,563 research outputs found

    Equal-Spin Pairing State of Superfluid 3^3He in Aerogel

    Full text link
    The equal-spin pairing (ESP) state, the so-called A-like phase, of superfluid 3^3He in aerogels is studied theoretically in the Ginzburg-Landau (GL) region by examining thermodynamics, and the resulting equilibrium phase diagram is mapped out. We find that, among the ABM, planar, and robust pairing states, the ABM state with presumably quasi long-ranged superfluid order is the best candidate of the A-like phase with a strange lowering of the polycritical point (PCP) observed experimentally.Comment: 4 pages, 1 figure, one reference added, accepted for publication in Phys. Rev.

    Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate

    Full text link
    We investigate freezing characteristics of a finite dipolar hexagonal plate by the Monte Carlo simulation. The hexagonal plate is cut out from a piled triangular lattice of three layers with FCC-like (ABCABC) stacking structure. In the present study an annealing simulation is performed for the dipolar plate uniaxially compressed in the direction of layer-piling. We find spin melting and refreezing driven by the uniaxial compression. Each of the melting and refreezing corresponds one-to-one with a change of the ground states induced by compression. The freezing temperatures of the ground-state orders differ significantly from each other, which gives rise to the spin melting and refreezing of the present interest. We argue that these phenomena are originated by a finite size effect combined with peculiar anisotropic nature of the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Noncoding RNAs and Intranuclear Positioning in Monoallelic Gene Expression

    Get PDF
    Mammalian X inactivation, imprinting, and allelic exclusion are classic examples of monoallelic gene expression. Two emerging themes are thought to be critical for monoallelic expression: (1) noncoding, often antisense, transcription linked to differential chromatin marks on otherwise homologous alleles and (2) physical segregation of alleles to separate domains within the nucleus. Here, we highlight recent progress in identifying these phenomena as possible key regulatory mechanisms of monoallelic expression

    Radiative spacetimes approaching the Vaidya metric

    Full text link
    We analyze a class of exact type II solutions of the Robinson-Trautman family which contain pure radiation and (possibly) a cosmological constant. It is shown that these spacetimes exist for any sufficiently smooth initial data, and that they approach the spherically symmetric Vaidya-(anti-)de Sitter metric. We also investigate extensions of the metric, and we demonstrate that their order of smoothness is in general only finite. Some applications of the results are outlined.Comment: 12 pages, 3 figure

    Quantized correlation coefficient for measuring reproducibility of ChIP-chip data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data.</p> <p>Results</p> <p>We develop the Quantized correlation coefficient (QCC) that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization), a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis.</p> <p>Conclusions</p> <p>To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.</p

    Discovering Non-Abelian Weak Couplings and an Anomalous Magnetic Dipole Moment of the W±W^{\pm} at LEP~2

    Full text link
    In view of the forthcoming results on W±W^{\pm} pair production at LEP~2, we emphasize that {\em direct empirical evidence} on non-trivial properties of the weak vector bosons can be obtained with relatively limited integrated luminosity. An integrated luminosity of 10  pb110\;\mathrm{pb}^{-1} at s=175\sqrt{s}=175 GeV will be sufficient to provide direct experimental evidence for non-vanishing self-couplings of non-Abelian type among the weak vector bosons. An integrated luminosity of 100  pb1100\;\mathrm{pb}^{-1} at s=175\sqrt{s}=175 GeV will provide direct evidence for the existence of an anomalous magnetic dipole moment of the charged vector bosons W±W^{\pm}.Comment: 6 pages LaTeX + 2 Figures; Revised Version contains correction of an erroneous formulation made in connection with the principle of minimal substitution; the title has been change
    corecore