4,145 research outputs found

    Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator

    Full text link
    We experimentally demonstrate electromagnetically induced transparency and light storage with ultracold 87Rb atoms in a Mott insulating state in a three dimensional optical lattice. We have observed light storage times of about 240 ms, to our knowledge the longest ever achieved in ultracold atomic samples. Using the differential light shift caused by a spatially inhomogeneous far detuned light field we imprint a "phase gradient" across the atomic sample, resulting in controlled angular redirection of the retrieved light pulse.Comment: 4 pages, 4 figure

    Adiabatic Quantum State Manipulation of Single Trapped Atoms

    Get PDF
    We use microwave induced adiabatic passages for selective spin flips within a string of optically trapped individual neutral Cs atoms. We position-dependently shift the atomic transition frequency with a magnetic field gradient. To flip the spin of a selected atom, we optically measure its position and sweep the microwave frequency across its respective resonance frequency. We analyze the addressing resolution and the experimental robustness of this scheme. Furthermore, we show that adiabatic spin flips can also be induced with a fixed microwave frequency by deterministically transporting the atoms across the position of resonance.Comment: 4 pages, 4 figure

    Coherence properties and quantum state transportation in an optical conveyor belt

    Get PDF
    We have prepared and detected quantum coherences with long dephasing times at the level of single trapped cesium atoms. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified and are of technical rather than fundamental nature. We present an analytical model of the reversible and irreversible dephasing mechanisms. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.Comment: 4 pages, 3 figure

    Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity

    Get PDF
    The relaxation of a quantum field stored in a high-QQ superconducting cavity is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon counting, undergoes jumps between photon number states. We select ensembles of field realizations evolving from a given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize in this way a tomography of the photon number relaxation process yielding all the jump rates between Fock states. The damping rates of the nn photon states (0n70\leq n \leq 7) are found to increase linearly with nn. The results are in excellent agreement with theory including a small thermal contribution

    Neutral Hydrogen 21cm Absorption at Redshift 0.673 towards 1504+377

    Get PDF
    We detect the 21 cm line of neutral hydrogen in absorption at a redshift of 0.673 towards the 1 Jy radio source 1504+377. The 1504+377 radio source is located toward the center of what appears to be an inclined disk galaxy at z = 0.674. The 21 cm absorption line shows multiple velocity components over a velocity range of about 100 km sec1^{-1}, with a total HI column density: N(HI) = 3.8×1019×(Tsf)3.8\times10^{19}\times({{T_s}\over{f}}) cm2^{-2}. The velocity-integrated optical depth of this system is the largest yet seen for redshifted HI 21 cm absorption line systems (Carilli 1995). The 21 cm absorption line is coincident in redshift with a previously detected broad molecular absorption line system (Wiklind and Combes 1996). We do not detect HI 21 cm absorption associated with the narrow molecular absorption line system at z = 0.67150, nor do we detect absorption at these redshifts by the 18 cm lines of OH, nor by the 2 cm transition of H2_2CO. There is no evidence for a bright optical AGN in 1504+377, suggesting significant obscuration through the disk -- a hypothesis supported by the strong absorption observed. The 1504+377 system resembles the ``red quasar'' PKS 1413+135, which has been modeled as a optically obscured AGN with a very young radio jet in the center of a gas rich disk galaxy (Perlman et al. 1996). The presence of very bright radio jets at the centers of these two disk galaxies presents a challenge to unification schemes for extragalactic radio sources and to models for the formation of radio loud AGN.Comment: 17 pages, postscrip

    A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    Full text link
    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed

    Clonal interference and Muller's ratchet in spatial habitats

    Full text link
    Competition between independently arising beneficial mutations is enhanced in spatial populations due to the linear rather than exponential growth of clones. Recent theoretical studies have pointed out that the resulting fitness dynamics is analogous to a surface growth process, where new layers nucleate and spread stochastically, leading to the build up of scale-invariant roughness. This scenario differs qualitatively from the standard view of adaptation in that the speed of adaptation becomes independent of population size while the fitness variance does not. Here we exploit recent progress in the understanding of surface growth processes to obtain precise predictions for the universal, non-Gaussian shape of the fitness distribution for one-dimensional habitats, which are verified by simulations. When the mutations are deleterious rather than beneficial the problem becomes a spatial version of Muller's ratchet. In contrast to the case of well-mixed populations, the rate of fitness decline remains finite even in the limit of an infinite habitat, provided the ratio Ud/s2U_d/s^2 between the deleterious mutation rate and the square of the (negative) selection coefficient is sufficiently large. Using again an analogy to surface growth models we show that the transition between the stationary and the moving state of the ratchet is governed by directed percolation

    Continued imaging of the transport of a single neutral atom

    Get PDF
    We have continuously imaged the controlled motion of a single atom as well as of a small number of distinguishable atoms with observation times exceeding one minute. The Cesium atoms are confined to potential wells of a standing wave optical dipole trap which allows to transport them over macroscopic distances. The atoms are imaged by an intensified CCD camera, and spatial resolution near the diffraction limit is obtained

    Magnetic Fields in Quasar Cores II

    Full text link
    Multi-frequency polarimetry with the Very Long Baseline Array (VLBA) telescope has revealed absolute Faraday Rotation Measures (RMs) in excess of 1000 rad/m/m in the central regions of 7 out of 8 strong quasars studied (e.g., 3C 273, 3C 279, 3C 395). Beyond a projected distance of ~20 pc, however, the jets are found to have |RM| < 100 rad/m/m. Such sharp RM gradients cannot be produced by cluster or galactic-scale magnetic fields, but rather must be the result of magnetic fields organized over the central 1-100 pc. The RMs of the sources studied to date and the polarization properties of BL Lacs, quasars and galaxies are shown to be consistent so far with the predictions of unified schemes. The direct detection of high RMs in these quasar cores can explain the low fractional core polarizations usually observed in quasars at centimeter wavelengths as the result of irregularities in the Faraday screen on scales smaller than the telescope beam. Variability in the RM of the core is reported for 3C 279 between observations taken 1.5 years apart, indicating that the Faraday screen changes on that timescale, or that the projected superluminal motion of the inner jet components samples a new location in the screen with time. Either way, these changes in the Faraday screen may explain the dramatic variability in core polarization properties displayed by quasars.Comment: Accepted to the ApJ. 27 pages, 9 figures including figure 6 in colo

    Coherent manipulation of atomic qubits in optical micropotentials

    Get PDF
    We experimentally demonstrate the coherent manipulation of atomic states in far-detuned dipole traps and registers of dipole traps based on two-dimensional arrays of microlenses. By applying Rabi, Ramsey, and spin-echo techniques, we systematically investigate the dephasing mechanisms and determine the coherence time. Simultaneous Ramsey measurements in up to 16 dipole traps are performed and proves the scalability of our approach. This represents an important step in the application of scalable registers of atomic qubits for quantum information processing. In addition, this system can serve as the basis for novel atomic clocks making use of the parallel operation of a large number of individual clocks each remaining separately addressable.Comment: to be published in Appl. Phys.
    corecore