323 research outputs found

    Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera

    Get PDF
    Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i) death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii) flies harboring mutant alleles of either adenylyl cyclase, Gsα, or the Gardos K(+) channel homolog SK are resistant to V. cholerae infection; and (iii) ingestion of a K(+) channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 μg of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera

    ANGPTL4 variants E40K and T266M are associated with lower fasting triglyceride levels in Non-Hispanic White Americans from the Look AHEAD Clinical Trial

    Get PDF
    Background: Elevated triglyceride levels are a risk factor for cardiovascular disease. Angiopoietin-like protein 4 (Angptl4) is a metabolic factor that raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). In nondiabetic individuals, the ANGPTL4 coding variant E40K has been associated with lower plasma triglyceride levels while the T266M variant has been associated with more modest effects on triglyceride metabolism. The objective of this study was to determine whether ANGPTL4 E40K and T266M are associated with triglyceride levels in the setting of obesity and T2D, and whether modification of triglyceride levels by these genetic variants is altered by a lifestyle intervention designed to treat T2D. Methods: The association of ANGPTL4 E40K and T266M with fasting triglyceride levels was investigated in 2,601 participants from the Look AHEAD Clinical Trial, all of whom had T2D and were at least overweight. Further, we tested for an interaction between genotype and treatment effects on triglyceride levels. Results: Among non-Hispanic White Look AHEAD participants, ANGPTL4 K40 carriers had mean triglyceride levels of 1.61 +/- 0.62 mmol/L, 0.33 mmol/L lower than E40 homozygotes (p = 0.001). Individuals homozygous for the minor M266 allele (MAF 30%) had triglyceride levels of 1.75 +/- 0.58 mmol/L, 0.24 mmol/L lower than T266 homozygotes (p = 0.002). The association of the M266 with triglycerides remained significant even after removing K40 carriers from the analysis (p = 0.002). There was no interaction between the weight loss intervention and genotype on triglyceride levels. Conclusions: This is the first study to demonstrate that the ANGPTL4 E40K and T266M variants are associated with lower triglyceride levels in the setting of T2D. In addition, our findings demonstrate that ANGPTL4 genotype status does not alter triglyceride response to a lifestyle intervention in the Look AHEAD study

    Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors

    Get PDF
    Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides

    Localization of the murine cholecystokinin A and B receptor genes

    Full text link
    We have determined the chromosomal locations of the two cholecystokinin (CCK) receptor genes in the mouse. Genetic localization utilized an interspecific backcross panel formed from the cross (C57BL/6J x Mus spretus ) F 1 x Mus spretus . Genomic DNAs from 94 individuals in the backcross were analyzed by Southern hybridization with rat CCK A and CCK B receptor cDNA probes. Unique map positions were determined by haplotype analysis with 650 previously mapped loci in the mouse backcross. The CCK A receptor gene ( Cckar ) mapped to mouse Chromosome (Chr) 5, in tight linkage with the DNA marker D5Bir8 . The CCK B receptor gene ( Cckbr ) mapped to mouse Chr 7, tightly linked to the β-hemoglobin locus ( Hbb ). This localization places Cckbr in the same region as the mouse obesity mutation tubby ( tub ), which also maps near Hbb (2.4±1.4 cM). Since CCK can function as a satiety factor when administered to rodents, localization of Cckbr near the tub mutation identifies this receptor as a possible candidate gene for this obesity mutation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47021/1/335_2004_Article_BF00352408.pd
    corecore