2,494 research outputs found
Method for reliable realization of a varphi Josephson junction
We propose a method to realize a Josephson junction by combining
alternating 0 and parts (sub junctions) with an intrinsically
non-sinusoidal current-phase relation (CPR). Conditions for the realization of
the ground state are analyzed. It is shown that taking into account the
non-sinusoidal CPR for a "clean junction with a ferromagnetic (F) barrier, one
can significantly enlarge the domain (regime of suitable F-layer thicknesses)
of the ground state and make the practical realization of
Josephson junctions feasible. Such junctions may also have two different stable
solutions, such as 0 and , 0 and , or and
Dynamics and transformations of Josephson vortex lattice in layered superconductors
We consider dynamics of Josephson vortex lattice in layered superconductors
with magnetic, charge (electrostatic) and charge-imbalance (quasiparticle)
interactions between interlayer Josephson junctions taken into account. The
macroscopic dynamical equations for interlayer Josephson phase differences,
intralayer charge and electron-hole imbalance are obtained and used for
numerical simulations. Different transformations of the vortex lattice
structure are observed. It is shown that the additional dissipation due to the
charge imbalance relaxation leads to the stability of triangular lattice.Comment: 9 pages, 3 eps figures, to be published in Phys. Rev.
Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors
We investigate dynamics of Josephson vortex lattice in layered high T
superconductors at high magnetic fields. It is shown that the average electric
current depends on the lattice structure and is resonantly enhanced when the
Josephson frequency matches the frequency of the plasma mode. We find the
stability regions of moving lattice. It is shown that a specific lattice
structure at given velocity is uniquely selected by the boundary conditions: at
small velocities periodic triangular lattice is stable and looses its stability
at some critical velocity. At even higher velocities a structure close to a
rectangular lattice is restored.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Weak Measurements of Light Chirality with a Plasmonic Slit
We examine, both experimentally and theoretically, an interaction of tightly
focused polarized light with a slit on a metal surface supporting
plasmon-polariton modes. Remarkably, this simple system can be highly sensitive
to the polarization of the incident light and offers a perfect
quantum-weak-measurement tool with a built-in post-selection in the
plasmon-polariton mode. We observe the plasmonic spin Hall effect in both
coordinate and momentum spaces which is interpreted as weak measurements of the
helicity of light with real and imaginary weak values determined by the input
polarization. Our experiment combines advantages of (i) quantum weak
measurements, (ii) near-field plasmonic systems, and (iii) high-numerical
aperture microscopy in employing spin-orbit interaction of light and probing
light chirality.Comment: 5 pages, 3 figure
Dynamic structure selection and instabilities of driven Josephson lattice in high-temperature superconductors
We investigate the dynamics of the Josephson vortex lattice in layered
high-T superconductors at high magnetic fields. Starting from coupled
equations for superconducting phases and magnetic field we derive equations for
the relative displacements [phase shifts] between the planar Josephson arrays
in the layers. These equations reveal two families of steady-state solutions:
lattices with constant phase shifts between neighboring layers, starting from
zero for a rectangular configuration to for a triangular configuration,
and double-periodic lattices. We find that the excess Josephson current is
resonantly enhanced when the Josephson frequency matches the frequency of the
plasma mode at the wave vector selected by the lattice structure. The regular
lattices exhibit several kinds of instabilities. We find stability regions of
the moving lattice in the plane lattice structure - Josephson frequency. A
specific lattice structure at given velocity is selected uniquely by boundary
conditions, which are determined by the reflection properties of
electromagnetic waves generated by the moving lattice. With increase of
velocity the moving configuration experiences several qualitative
transformations. At small velocities the regular lattice is stable and the
phase shift between neighboring layers smoothly decreases with increase of
velocity, starting from for a static lattice. At the critical velocity
the lattice becomes unstable. At even higher velocity a regular lattice is
restored again with the phase shift smaller than . With increase of
velocity, the structure evolves towards a rectangular configuration.Comment: 28 pages, 12 figures, submitted to Phys. Rev.
Mesoscopic cross-film cryotrons: Vortex trapping and dc-Josephson-like oscillations of the critical current
We investigate theoretically and experimentally the transport properties of a
plain Al superconducting strip in the presence of a single straight
current-carrying wire, oriented perpendicular to the superconducting strip. It
is well known that the critical current of the superconducting strip, Ic, in
such cryotron--like system can be tuned by changing the current in the control
wire, Iw. We demonstrated that the discrete change in the number of the pinned
vortices/antivortices inside the narrow and long strip nearby the
current-carrying wire results in a peculiar oscillatory dependence of Ic on Iw.Comment: 8 pages, 8 figure
Recycled incomplete identification procedures for blood screening
The operation of blood bank systems is characterized by two crucial factors: testing procedures and perishability. We propose a new testing procedure that we term Recycled Incomplete Identification Procedure (RIIP). In RIIP, groups of pooled blood units which are found contaminated in a so-called ELISA test are divided into smaller subgroups and again group-tested by ELISA, and so forth, until finally a so-called PCR test is conducted for those subgroups which are found clean. We analyze and optimize the performance of RIIP, maximizing the profit associated with the procedure. Our numerical results suggest that it may indeed be profitable to do several cycles at ELISA
Localization of superconductivity in superconductor-electromagnet hybrids
We investigate the nucleation of superconductivity in a superconducting Al
strip under the influence of the magnetic field generated by a current-carrying
Nb wire, perpendicularly oriented and located underneath the strip. The
inhomogeneous magnetic field, induced by the Nb wire, produces a spatial
modulation of the critical temperature T_c, leading to a controllable
localization of the superconducting order parameter (OP) wave function. We
demonstrate that close to the phase boundary T_c(B_ext) the localized OP
solution can be displaced reversibly by either applying an external
perpendicular magnetic field B_ext or by changing the amplitude of the
inhomogeneous field.Comment: 10 pages, 6 figure
- …