55 research outputs found

    Stratégies d’exploitation du fourrage par les éleveurs de la zone sahélienne du Burkina Faso

    Get PDF
    Les caractéristiques de la collecte et de la conservation du fourrage ont été étudiées dans cinq villages du Sahel. L’objectif visé était d’identifier les principales stratégies utilisées par les paysans pour minimiser les problèmes de disponibilités alimentaires du fourrage en saison sèche. Des enquêtes à passage unique ont été ainsi conduites dans 205 exploitations d’agro pasteurs. Les résultats de l’étude révèlent que l’activité deproduction et de conservation du fourrage est largement pratiquée par les agropasteurs (plus de 88,2%). La collecte concerne aussi bien les fourrages naturels que les résidus de récoltes. Les quantités totales de matières sèches stockées annuellement par exploitant sont de l’ordre de 2,043 tonnes, soit respectivement 13,5% et 85,4% sous forme de fourrages naturels et de résidus de récoltes. Sur la base des ressources productives (nombre d’animaux) quatre classes de paysans ont été distinguées. En saison sèche, ces classes déploient des stratégies différentes en matière de gestion des stocks alimentaires. Les producteurs les moins nantis en ressources animales ont tendance à être des vendeurs nets de fourrages tandis que les plus nantis des acheteurs. Les principales contraintes aux activités d’exploitation du fourrage naturel sont surtout d’ordre économique mais aussi de gestion de l’espace

    Thin-Film Metamaterials called Sculptured Thin Films

    Full text link
    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009, Sibiu, Romania

    Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2

    Get PDF
    Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    The molecular basis of filamin binding to integrins and competition with talin

    No full text
    The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin β cytoplasmic tail forms an extended β strand that interacts with β strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.Tiila Kiema, Yatish Lad, Pengju Jiang, Camilla L. Oxley, Massimiliano Baldassarre, Kate L. Wegener, Iain D. Campbell, Jari Ylänne and David A. Calderwoodhttp://www.sciencedirect.com/science/journal/1097276

    The molecular basis of filamin binding to integrins and competition with talin.

    No full text
    The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions

    Crystal structure of human filamin C domain 23 and small angle scattering model for filamin C 23-24 dimer.

    No full text
    Filamin C is a dimeric, actin-binding protein involved in organization of cortical cytoskeleton and of the sarcomere. We performed crystallographic, small-angle X-ray scattering and analytical ultracentrifugation experiments on the constructs containing carboxy-terminal domains of the protein (domains 23-24 and 19-21). The crystal structure of domain 23 of filamin C showed that the protein adopts the expected immunoglobulin (Ig)-like fold. Small-angle X-ray scattering experiments performed on filamin C tandem Ig-like domains 23 and 24 reveal a dimer that is formed by domain 24 and that domain 23 has little interactions with itself or with domain 24, while the analytical ultracentrifugation experiments showed that the filamin C domains 19-21 form elongated monomers in diluted solutions
    • …
    corecore