2,641 research outputs found

    A Program of Research in Obstetrics and Gynecology in a Private Hospital

    Get PDF

    A realization of the Lie algebra associated to a Kantor triple system

    Full text link
    We present a nonlinear realization of the 5-graded Lie algebra associated to a Kantor triple system. Any simple Lie algebra can be realized in this way, starting from an arbitrary 5-grading. In particular, we get a unified realization of the exceptional Lie algebras f_4, e_6, e_7, e_8, in which they are respectively related to the division algebras R, C, H, O.Comment: 11 page

    Berezinians, Exterior Powers and Recurrent Sequences

    Full text link
    We study power expansions of the characteristic function of a linear operator AA in a pqp|q-dimensional superspace VV. We show that traces of exterior powers of AA satisfy universal recurrence relations of period qq. `Underlying' recurrence relations hold in the Grothendieck ring of representations of \GL(V). They are expressed by vanishing of certain Hankel determinants of order q+1q+1 in this ring, which generalizes the vanishing of sufficiently high exterior powers of an ordinary vector space. In particular, this allows to explicitly express the Berezinian of an operator as a rational function of traces. We analyze the Cayley--Hamilton identity in a superspace. Using the geometric meaning of the Berezinian we also give a simple formulation of the analog of Cramer's rule.Comment: 35 pages. LaTeX 2e. New version: paper substantially reworked and expanded, new results include

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Pseudo-boundaries in discontinuous 2-dimensional maps

    Full text link
    It is known that Kolmogorov-Arnold-Moser boundaries appear in sufficiently smooth 2-dimensional area-preserving maps. When such boundaries are destroyed, they become pseudo-boundaries. We show that pseudo-boundaries can also be found in discontinuous maps. The origin of these pseudo-boundaries are groups of chains of islands which separate parts of the phase space and need to be crossed in order to move between the different sub-spaces. Trajectories, however, do not easily cross these chains, but tend to propagate along them. This type of behavior is demonstrated using a ``generalized'' Fermi map.Comment: 4 pages, 4 figures, Revtex, epsf, submitted to Physical Review E (as a brief report

    Quasi-normal modes of superfluid neutron stars

    Full text link
    We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasi-normal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasi-normal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.Comment: 16 pages, 7 figures, 2 table
    corecore