389 research outputs found

    Structure Of Demand And Equilibrium In Oligopolistic Models With Piecewise Quadratic Cost Functions

    Get PDF
    In this paper, we consider an oligopolistic model with conjectures concerning the price variations depending upon the agents’ production increase or increase. By introducing the notion of an interior stable equilibrium, we analyze the behavior of groups of consumers with different consumption abilities. The proposed techniques allow us to make a qualitative description of dependence of the market price upon the active demand component

    Vibrating the QCD string

    Get PDF
    The large distance behaviour of the adiabatic hybrid potentials is studied in the framework of the QCD string model. The calculated spectra are shown to be the result of interplay between potential-type longitudinal and string-type transverse vibrations.Comment: LaTeX2e, 9 pages, 2 Postscript figures, final version to appear in Yad.Fi

    A Novel Mechanism of H^0 Di-baryon Production in Proton-Proton Interactions from Parton Based Gribov-Regge Theory

    Get PDF
    A novel mechanism of H^0 and strangelet production in hadronic interactions within the Gribov-Regge approach is presented. In contrast to traditional distillation approaches, here the production of multiple (strange) quark bags does not require large baryon densities or a QGP. The production cross section increases with center of mass energy. Rapidity and transverse momentum distributions of the H^0 are predicted for pp collisions at E_lab = 160 AGeV (SPS) and \sqrt s = 200 AGeV (RHIC). The predicted total H^0 multiplicities are of order of the Omega-baryon yield and can be accessed by the NA49 and the STAR experiments.Comment: 4 page

    QCD string and the Lorentz nature of confinement

    Full text link
    We address the question of the Lorentz nature of the effective long-range interquark interaction generated by the QCD string with quarks at the ends. Studying the Dyson-Schwinger equation for a heavy-light quark-antiquark system, we demonstrate explicitly how a Lorentz-scalar interaction appears in the Diraclike equation for the light quark, as a consequence of chiral symmetry breaking. We argue that the effective interquark interaction in the Hamiltonian of the QCD string with quarks at the ends stems from this effective scalar interaction.Comment: LaTeX2e, 5 pages, uses jetpl.cls (included), to appear in JETP Let

    Spectroscopy of Baryons Containing Two Heavy Quarks in Nonperturbative Quark Dynamics

    Get PDF
    We have studied the three quark systems in an Effective Hamiltonian approach in QCD. With only two parameters: the string tension sigma and the strong coupling constant alpha_s we obtain a good description of the ground state light and heavy baryons. The prediction of masses of the doubly heavy baryons not discovered yet are also given. In particular, a mass of 3620 MeV for the lightest (ccu) baryon is found by employing the hyperspherical formalism to the three quark confining potential with the string junction.Comment: 8 pages, LaTe

    Ground-state baryons in nonperturbative quark dynamics

    Full text link
    We review the results obtained in an Effective Hamiltonian (EH) approach for the three-quark systems. The EH is derived starting from the Feynman--Schwinger representation for the gauge-invariant Green function of the three quarks propagating in the nonperturbative QCD vacuum and assuming the minimal area law for the asymptotic of the Wilson loop. It furnishes the QCD consistent framework within which to study baryons. The EH has the form of the nonrelativistic three-quark Hamiltonian with the perturbative Coulomb-like and nonperturbative string interactions and the specific mass term. After outlining the approach, methods of calculations of the baryon eigenenergies and some simple applications are explained in details. With only two parameters: the string tension σ=0.15GeV2\sigma=0.15 GeV^2 and the strong coupling constant αs=0.39\alpha_s=0.39 a unified quantitative description of the ground state light and heavy baryons is achieved. The prediction of masses of the doubly heavy baryons not discovered yet are also given. In particular, a mass of 3660MeV3660 MeV for the lightest Ξcc\Xi_{cc} baryon is found by employing the hyperspherical formalism to the three quark confining potential with the string junction.Comment: 25 pages, 4 figures included, LaTeX 2e; to be published in Phys. Atom. Nuc

    Determination of drotaverine hydrochloride at hanging mercury drop electrode by voltammetry

    Get PDF

    QCD string in light-light and heavy-light mesons

    Get PDF
    The spectra of light-light and heavy-light mesons are calculated within the framework of the QCD string model, which is derived from QCD in the Wilson loop approach. Special attention is payed to the proper string dynamics that allows us to reproduce the straight-line Regge trajectories with the inverse slope being 2\pi\sigma for light-light and twice as small for heavy-light mesons. We use the model of the rotating QCD string with quarks at the ends to calculate the masses of several light-light mesons lying on the lowest Regge trajectories and compare them with the experimental data as well as with the predictions of other models. The masses of several low-lying orbitally and radially excited heavy--light states in the D, D_s, B, and B_s meson spectra are calculated in the einbein (auxiliary) field approach, which has proven to be rather accurate in various calculations for relativistic systems. The results for the spectra are compared with the experimental and recent lattice data. It is demonstrated that an account of the proper string dynamics encoded in the so-called string correction to the interquark interaction leads to an extra negative contribution to the masses of orbitally excited states that resolves the problem of the identification of the D(2637) state recently claimed by the DELPHI Collaboration. For the heavy-light system we extract the constants \bar\Lambda, \lambda_1, and \lambda_2 used in Heavy Quark Effective Theory (HQET) and find good agreement with the results of other approaches.Comment: RevTeX, 42 pages, 7 tables, 7 EPS figures, uses epsfig.sty, typos corrected, to appear in Phys.Rev.
    corecore