10,621 research outputs found
Doped Mott insulator as the origin of heavy Fermion behavior in LiV2O4
We investigate the electronic structure of LiV2O4, for which heavy fermion
behavior has been observed in various experiments, by the combination of the
local density approximation and dynamical mean field theory. To obtain results
at zero temperature, we employ the projective quantum Monte Carlo method as an
impurity solver. Our results show that the strongly correlated a1g band is a
lightly doped Mott insulator which -at low temperatures- shows a sharp (heavy)
quasiparticle peak just above the Fermi level, which is consistent with recent
photoemission experiment by Shimoyamada et al. [Phys. Rev. Lett. 96 026403
(2006)].Comment: 4 pages, 5 figure
Realistic modeling of strongly correlated electron systems: An introduction to the LDA+DMFT approach
The LDA+DMFT approach merges conventional band structure theory in the local
density approximation (LDA) with a state-of-the-art many-body technique, the
dynamical mean-field theory (DMFT). This new computational scheme has recently
become a powerful tool for ab initio investigations of real materials with
strong electronic correlations. In this paper an introduction to the basic
ideas and the set-up of the LDA+DMFT approach is given. Results for the
photoemission spectra of the transition metal oxide La_{1-x}Sr_xTiO_3, obtained
by solving the DMFT-equations by quantum Monte-Carlo (QMC) simulations, are
presented and are found to be in very good agreement with experiment. The
numerically exact DMFT(QMC) solution is compared with results obtained by two
approximative solutions, i.e., the iterative perturbation theory and the
non-crossing approximation.Comment: 15 pages, 3 figures, SCES-Y2K Conference Proceeding
Quantum Monte Carlo study for multiorbital systems with preserved spin and orbital rotational symmetries
We propose to combine the Trotter decomposition and a series expansion of the
partition function for Hund's exchange coupling in a quantum Monte Carlo (QMC)
algorithm for multiorbital systems that preserves spin and orbital rotational
symmetries. This enables us to treat the Hund's (spin-flip and pair-hopping)
terms, which is difficult in the conventional QMC method. To demonstrate this,
we first apply the algorithm to study ferromagnetism in the two-orbital Hubbard
model within the dynamical mean-field theory (DMFT). The result reveals that
the preservation of the SU(2) symmetry in Hund's exchange is important, where
the Curie temperature is grossly overestimated when the symmetry is degraded,
as is often done, to Ising (Z). We then calculate the spectral
functions of SrRuO by a three-band DMFT calculation with tight-binding
parameters taken from the local density approximation with proper rotational
symmetry.Comment: 9 pages, 9 figures. Typos corrected, some comments and references
adde
The LDA+DMFT route to identify good thermoelectrics
For technical applications thermoelectric materials with a high figure of
merit are desirable, and strongly correlated electron systems are very
promising in this respect. Since effects of bandstructure_and_ electronic
correlations play an important role for getting large figure of merits, the
combination of local density approximation_and_ dynamical mean field theory is
an ideal tool for the computational materials design of new thermoelectrics as
well as to help us understand the mechanisms leading to large figures of merits
in certain materials. This conference proceedings provides for a brief
introduction to the method and reviews recent results for LiRh_2O_4.Comment: 17 pages, 9 figures; to be published in 'Properties and Applications
of Thermoelectric Materials', editors V. Zlatic and A. Hewso
Momentum-resolved spectral functions of SrVO calculated by LDA+DMFT
LDA+DMFT, the merger of density functional theory in the local density
approximation and dynamical mean-field theory, has been mostly employed to
calculate k-integrated spectra accessible by photoemission spectroscopy. In
this paper, we calculate k-resolved spectral functions by LDA+DMFT. To this
end, we employ the Nth order muffin-tin (NMTO) downfolding to set up an
effective low-energy Hamiltonian with three t_2g orbitals. This downfolded
Hamiltonian is solved by DMFT yielding k-dependent spectra. Our results show
renormalized quasiparticle bands over a broad energy range from -0.7 eV to +0.9
eV with small ``kinks'', discernible in the dispersion below the Fermi energy.Comment: 21 pages, 8 figure
Orbital-selective Mott-Hubbard transition in the two-band Hubbard model
Recent advances in the field of quantum Monte Carlo simulations for impurity
problems allow --within dynamical mean field theory-- for a more thorough
investigation of the two-band Hubbard model with narrow/wide band and
SU(2)-symmetric Hund's exchange. The nature of this transition has been
controversial, and we establish that an orbital-selective Mott-Hubbard
transition exists. Thereby, the wide band still shows metallic behavior after
the narrow band became insulating -not a pseudogap as for an Ising Hund's
exchange. The coexistence of two solutions with metallic wide band and
insulating or metallic narrow band indicates, in general, first-order
transitions.Comment: 4 pages, 3 figures; 2nd version as published in Phys. Rev. B (R);
minor corrections, putting more emphasis on differences in spectra when
comparing SU(2) and Ising Hund's exchang
Computation of correlation-induced atomic displacements and structural transformations in paramagnetic KCuF3 and LaMnO3
We present a computational scheme for ab initio total-energy calculations of
materials with strongly interacting electrons using a plane-wave basis set. It
combines ab initio band structure and dynamical mean-field theory and is
implemented in terms of plane-wave pseudopotentials. The present approach
allows us to investigate complex materials with strongly interacting electrons
and is able to treat atomic displacements, and hence structural
transformations, caused by electronic correlations. Here it is employed to
investigate two prototypical Jahn-Teller materials, KCuF3 and LaMnO3, in their
paramagnetic phases. The computed equilibrium Jahn-Teller distortion and
antiferro-orbital order agree well with experiment, and the structural
optimization performed for paramagnetic KCuF3 yields the correct lattice
constant, equilibrium Jahn-Teller distortion and tetragonal compression of the
unit cell. Most importantly, the present approach is able to determine
correlation-induced structural transformations, equilibrium atomic positions
and lattice structure in both strongly and weakly correlated solids in their
paramagnetic phases as well as in phases with long-range magnetic order.Comment: 27 pages, 11 figure
The elusive old population of the dwarf spheroidal galaxy Leo I
We report the discovery of a significant old population in the dwarf
spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO
New Technology Telescope. Studies of the stellar content of Local Group dwarf
galaxies have shown the presence of an old stellar population in almost all of
the dwarf spheroidals. The only exception was Leo I, which alone appeared to
have delayed its initial star formation episode until just a few Gyr ago. The
color-magnitude diagram of Leo I now reveals an extended horizontal branch,
unambiguously indicating the presence of an old, metal-poor population in the
outer regions of this galaxy. Yet we find little evidence for a stellar
population gradient, at least outside R > 2' (0.16 kpc), since the old
horizontal branch stars of Leo I are radially distributed as their more
numerous intermediate-age helium-burning counterparts. The discovery of a
definitely old population in the predominantly young dwarf spheroidal galaxy
Leo I points to a sharply defined first epoch of star formation common to all
of the Local Group dSph's as well as to the halo of the Milky Way.Comment: 4 pages, 3 postscript figures, uses apjfonts.sty, emulateapj.sty.
Accepted for publication in ApJ Letter
Reply to a Comment on ``Projective Quantum Monte Carlo Method for the Anderson Impurity Model and its Application to Dynamical Mean Field Theory''
In our reply, we show that the objections put forward in cond-mat/0508763
concerning our paper, Phys. Rev. Lett. 93, 136405 (2004), are not valid:
(i) There is no orthogonality catastrophe (OC) for our calculations, and it
is also generally not ``unpractical'' to avoid it.
(ii) The OC does not affect our results.Comment: 1 page, 1 figure, Phys. Rev. Lett. in print; also note
cond-mat/050944
- …
