654 research outputs found

    Jamming and unjamming of concentrated colloidal dispersions in channel flow

    Get PDF
    We investigated the pressure driven flow of concentrated colloidal dispersions in a converging channel geometry. Optical microscopy and image analysis were used to track tracer particles mixed into dispersions of sterically stabilized poly(methyl methacrylate) (PMMA) spheres. The dispersions were drawn into a round \unit[0.5]{mm} capillary at one of two pump speeds (≡\equiv applied pressure): v_1=\unit[0.245]{ml\,\, min^{-1}} and v_2=\unit[0.612]{ml\,\, min^{-1}}. We observed that the dispersions at particle volume fractions ϕ⩽0.50\phi\leqslant0.50 followed Hagen-Poiseuille flow for a simple fluid; i.e. the mean flow rate ⟨V⟩\langle V\rangle is approximately proportional to pressure drop (pump speed) and inversely proportional viscosity η\eta. Above this concentration (ϕ⩾0.505\phi\geqslant0.505), the dispersions exhibit granular-like jamming behavior with ⟨V⟩\langle V\rangle becoming independent of the pressure drop. However, at the highest applied pressure (v2v_2), the dispersions are able to unjam and switch from granular-like behaviour back to a simple hard-sphere liquid like system, due to the formation of rotating vortices in the spatial flow pattern. This mechanism is consistent with computer simulations of granular systems and supports for example proposed explanations of anomalously low friction in earthquake faults

    Pinpointing Gap Minima in Ba(Fe0.94_{0.94}Co0.06)2_{0.06})_{2}As2_2 \textit{via} Band Structure Calculations and Electronic Raman Scattering

    Full text link
    A detailed knowledge of the gap structure for the Fe-pnictide superconductors is still rather rudimentary, with several conflicting reports of either nodes, deep gap minima, or fully isotropic gaps on the Fermi surface sheets, both in the kx−kyk_{x}-k_{y} plane and along the c-axis. In this paper we present considerations for electronic Raman scattering which can help clarify the gap structure and topology using different light scattering geometries. Using density functional calculations for the Raman vertices, it is shown that the location of the gap minima may occur on loops stretching over a portion of the c-axis in Ba(Fe0.94_{0.94}Co0.06)2_{0.06})_{2}As2_2.Comment: 4+ pages, three figure

    Band and momentum dependent electron dynamics in superconducting Ba(Fe1−xCox)2As2{\rm Ba(Fe_{1-x}Co_{x})_2As_2} as seen via electronic Raman scattering

    Full text link
    We present details of carrier properties in high quality Ba(Fe1−xCox)2As2{\rm Ba(Fe_{1-x}Co_{x})_2As_2} single crystals obtained from electronic Raman scattering. The experiments indicate a strong band and momentum anisotropy of the electron dynamics above and below the superconducting transition highlighting the importance of complex band-dependent interactions. The presence of low energy spectral weight deep in the superconducting state suggests a gap with accidental nodes which may be lifted by doping and/or impurity scattering. When combined with other measurements, our observation of band and momentum dependent carrier dynamics indicate that the iron arsenides may have several competing superconducting ground states.Comment: 5 pages, 4 figure

    Isolation and identification of Candida albicans to produce in house helicase for PCR

    Get PDF
    Candida albicans is a dimorphic fungus that can grow in a wide range of temperature. In such case, this microorganism has the potential to produce enzymes that able to function at elevated temperature. These enzymes are also essential in the field of molecular biology and recombinant technologies. Therefore, the enzymes produced by Candida albicans could be applied in the polymerase chain reaction (PCR). The PCR is the most widely used in DNA amplification. In this study, Candida spp. were successfully isolated and collected from Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Different culture media were used to identify the morphology of colony. Based on the colonies growth on chromogenic agar, Candida sp. was identified. Microscopic examination (light and scanning microscopy) was carried out to identify the morphology of the isolate. A presumptive identification of germ tube test was performed to find out the dimorphic and pathogenicity characteristic of isolate. The formation of germ tubes from the isolate showed positive result of Candida albicans. A commercial Analytical Profile Index (API) Candida identification kit was used in this study as a phenotypic identification of Candida sp. The result of API Candida was confirmed that the isolate was the Candida albicans. Candida albicans was successfully isolated and identified phenotypically in this study for future in house helicase production

    A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−x_{1-x}Cox_{x})2_2As2_2

    Full text link
    Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2_2As2_2 into two distinct transitions. For xx=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5T_{\mathrm{TO}}=99 \pm 0.5 K) and the antiferromagnetic transition occurs at TAF=93±0.5T_{\mathrm{AF}}=93 \pm 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x≈0.055x \approx 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice

    Quantum oscillations in the parent pnictide BaFe2_2As2_2 : itinerant electrons in the reconstructed state

    Full text link
    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of \ba122. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.Comment: 5 pages, 3 figure
    • …
    corecore