19 research outputs found
Alcohol use disorders are associated with venous thromboembolism.
Moderate alcohol consumption has been suggested to protect against venous thromboembolism (VTE). However, it is not known how alcohol abuse and its associated somatic complications affect the risk of VTE. The present study determined the risk of pulmonary embolism (PE) and deep vein thrombosis (DVT) of the lower extremities in patients with alcohol use disorders (AUDs) in Sweden. All inpatients with AUDs in 2002-2010 without a previous VTE event (72,024 patients) were matched to five controls without AUD and followed until the end of follow-up (December 31, 2010), death, emigration or a VTE event. Cox regression was used to determine adjusted hazard ratios (HRs) for VTE. AUD patients were further divided into those without alcohol-related somatic complications (AUD-) and those with alcohol-related somatic complications (AUD+, i.e., encephalopathy, epilepsy, polyneuropathy, myopathy, cardiomyopathy, gastritis, liver disease, acute pancreatitis, and chronic pancreatitis). The adjusted HR for VTE was significantly increased for both AUD- (HR 1.70, 95 % CI 1.55-1.87) and AUD+ (HR 1.73, 95 % CI 1.37-2.19) patients. The risk of DVT was increased in both AUD+ and AUD- patients (HR 1.62, 95 % CI 1.45-1.83 and HR 1.99, 95 % CI 1.53-2.59, respectively). However, the risk of PE was only significantly increased in AUD- patients (HR 1.87, 95 % 1.59-1.20) and not in AUD+ patients (HR 1.16, 95 % 0.70-1.91). In conclusion, the present study shows that AUD increases the risk of VTE, even in the absence of alcohol-related somatic complications. Our findings suggest that severe alcohol abuse increases the risk of VTE
Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces
The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia
Powering the 21st century by wind energy—Options, facts, figures
This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades