39 research outputs found

    Trophic interactions between ciliates and nematodes from an intertidal flat

    Get PDF
    The present study investigated the possibility of a trophic link between ciliates and nematodes in fine sandy sediments of the Molenplaat intertidal flat (Schelde estuary, SW Netherlands). Grazing experiments were conducted under controlled laboratory conditions, with ciliate species isolated from enrichment cultures and nematodes collected directly from the field. Significant reductions in ciliate numbers were found in the presence of the predatory nematode Enoploides longispiculosus, a prominent species (and genus) in fine to medium sandy sediments of the North Sea and adjacent estuaries. No such effects were found when ciliates were inoculated with a mix of mainly deposit-feeding nematodes from the same sampling site. On the basis of these results, ciliate predation by E. longispiculosus was tested for several benthic ciliate species and abundances, at a range of predator abundances and temperatures, and in the presence of alternative prey (in casu nematodes). E. longispiculosus significantly reduced the densities of 5 out of 6 ciliate species offered as prey. Depending on the experimental conditions and the prey species, predation rates ranged from 0.19 to 10.8 ciliates predator-1 h-1, corresponding to a biomass consumption of 0.001 to 0.33 µg C predator-1 d-1. An overall positive relation between available ciliate biomass and predation rate was found. Comparison of experimental data with field conditions suggests that a considerable part of the ciliate production in fine sandy sediments of the Molenplaat is likely to be consumed by E. longispiculosus, which largely dominates meiofaunal biomass there. Estimated carbon requirements for the predator and production estimates of ciliate and nematode prey at the study site strongly suggest that ciliates are probably a far more important carbon source for E. longispiculosus than nematode prey, at least between late spring and autumn. This implies that carbon transfer from primary producers and bacteria to predatory nematodes may to a large extent be mediated through the microbial food web. In view of the generally high densities and biomasses of ciliates as well as predacious nematodes in fine sandy sediments, similar patterns are to be expected in many other estuarine and marine sediments

    Ciliate predation by nematodes in tidal flat sediments

    Get PDF
    The present study investigates the possibility of a trophic link between ciliates and nematodes in fine sandy sediments of the Molenplaat intertidal flat (Schelde estuary, SW Netherlands). Grazing experiments were conducted under controlled laboratory conditions, with ciliate species isolated from enrichment cultures and nematodes directly collected from the field. Significant reductions in ciliate numbers were found in the presence of the predatory nematode Enoploides longispiculosus, a prominent species (and genus) in fine to medium sandy sediments of the North Sea and adjacent estuaries. No such effects were found when ciliates were inoculated with a mix of mainly deposit-feeding nematodes from the same sampling site. Based on these results, ciliate predation by E. longispiculosus was tested for several benthic ciliate species and abundances, at a range of predator abundances and temperatures, and in the presence of alternative prey (in casu nematodes). E. longispiculosus was capable of significantly reducing densities of 5 out of 6 ciliate species offered as prey. Depending on the experimental conditions and the prey species, predation rates ranged from 0.19 to 10.8 ciliates predator-1 hour-1, corresponding to a biomass consumption of 0.001-0.33 µg C predator-1 day-1. An overall positive relation between available ciliate biomass and predation rate was found. Comparison of experimental data with field conditions suggests that a considerable part of the ciliate production in fine sandy sediments of the Molenplaat is likely to be consumed by E. longispiculosus, which largely dominates meiofaunal biomass there. Estimated carbon requirements for the predator and production estimates of ciliate and nematode prey at the study site, strongly suggest that ciliates are probably a far more important carbon source for E. longispiculosus than nematode prey, at least between late spring and autumn. This implies that carbon transfer from primary producers and bacteria to predatory nematodes may to a large extent be mediated through the microbial food web. In view of the generally high densities/biomasses of ciliates as well as predacious nematodes in fine sandy sediments, similar patterns are to be expected in many other estuarine and marine sediments

    Diversity, ecology and the role of protist communities in the Schelde estuary: research by the "Protistology & Aquatic Ecology" group, University Gent (poster)

    Get PDF
    The section ‘Protistology & Aquatic Ecology’ has been studying the diversity and ecology of planktonic and benthic communities of unicellular eukaryotes (or protists) in the Schelde estuary. The study area involves the entire estuarine gradient, going from the freshwater tidal reaches in the Belgian part of the estuary to the estuary mouth in The Netherlands. Large research efforts were invested in the diversity of protistan communities (diatoms and other micro-algae, heterotrophic flagellates and ciliates) and the biotic and abiotic factors that regulate their structure and composition. In addition, several studies dealt with the role of microbial plankton and benthos in the functioning of estuarine food webs. In these studies, attention was paid to the importance of diversity of microbial communities for fluxes of matter and energy through the estuarine microbial ecosystem. This poster aims at illustrating certain aspects of this research

    Ecological implications of life-forms in intertidal benthic diatoms in macrotidal estuaries

    Get PDF
    Diatom communities inhabiting intertidal estuarine sediments are composed of different life-forms, ranging from adnate epipsammic to free-living epipelic and tychoplanktonic forms. A detailed study of the spatial and temporal distribution patterns of various life-forms in the macro-tidal Westerschelde estuary (South-West Netherlands) revealed that the specific life-form composition of a community has an important influence on its temporal dynamics and might also have major implications for the transfer of diatom-fixed carbon to higher trophic levels. The importance of substrate structure and availability, stochastic (e.g. climate-induced and anthropogenic) hydrodynamic events and the nature and rate of sediment development in regulating the dynamics of these communities are evaluated

    Exploring the Use of Cytochrome Oxidase c Subunit 1 (COI) for DNA Barcoding of Free-Living Marine Nematodes

    Get PDF
    BackgroundThe identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition.MethodologyBoth partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8% vs. 65.8%, respectively) and produced a higher number of bidirectional COI sequences (65.8% vs 39.0%, respectively). A threshold value of 5% K2P genetic divergence marked a clear DNA barcoding gap separating intra- and interspecific distances: 99.3% of all interspecific comparisons were >0.05, while 99.5% of all intraspecific comparisons were <0.05 K2P distance.ConclusionThe I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequence

    Phosphate Starvation Triggers Production and Secretion of an Extracellular Lipoprotein in Caulobacter crescentus

    Get PDF
    Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS) is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conlusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment
    corecore