2,630 research outputs found
The Embedded Local Monitor Board (ELMB) in the LHC Front-end I/O Control System
The Embedded Local Monitor Board is a plug-on board to be used in LHC detectors for a range of different front-end control and monitoring tasks. It is based on the CAN serial bus system and is radiation tolerant and can be used in magnetic fields. The main features of the ELMB are described and results of several radiation tests are presented. I
Computational Indistinguishability between Quantum States and Its Cryptographic Application
We introduce a computational problem of distinguishing between two specific
quantum states as a new cryptographic problem to design a quantum cryptographic
scheme that is "secure" against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states
with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two
probability distributions in computational cryptography. As our major
contribution, we show that QSCDff has three properties of cryptographic
interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff
coincides with its worst-case hardness; and (iii) QSCDff is computationally at
least as hard as the graph automorphism problem in the worst case. These
cryptographic properties enable us to construct a quantum public-key
cryptosystem, which is likely to withstand any chosen plaintext attack of a
polynomial-time quantum adversary. We further discuss a generalization of
QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies
on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail
proofs and follow-up of recent wor
The complexity of translationally-invariant low-dimensional spin lattices in 3D
In this theoretical paper, we consider spin systems in three spatial dimensions and consider the computational complexity of estimating the ground state energy, known as the local Hamiltonian problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem for 3D lattices with face-centered cubic unit cells and 4-local translationally invariant interactions between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is the class of problems which can be verified in exponential time on a quantum computer. We go beyond a mere embedding of past hard 1D history state constructions, for which the local spin dimension is enormous: even state-of-the-art constructions have local dimension 42. We avoid such a large local dimension by combining some different techniques in a novel way. For the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize a recently developed computational model, called a quantum ring machine, which is especially well suited for translationally invariant history state constructions. This is encoded with a new and particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest-neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary counter which translates one cube side length into a binary description for the encoded verifier input and a carefully engineered history state construction that implements the ring machine on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin dimension, surpassing the best translationally invariant result to date by two orders of magnitude (in the number of degrees of freedom per coupling). This brings our models on par with the best non-translationally invariant constructio
Optical Properties of Deep Ice at the South Pole - Absorption
We discuss recent measurements of the wavelength-dependent absorption
coefficients in deep South Pole ice. The method uses transit time distributions
of pulses from a variable-frequency laser sent between emitters and receivers
embedded in the ice. At depths of 800 to 1000 m scattering is dominated by
residual air bubbles, whereas absorption occurs both in ice itself and in
insoluble impurities. The absorption coefficient increases approximately
exponentially with wavelength in the measured interval 410 to 610 nm. At the
shortest wavelength our value is about a factor 20 below previous values
obtained for laboratory ice and lake ice; with increasing wavelength the
discrepancy with previous measurements decreases. At around 415 to 500 nm the
experimental uncertainties are small enough for us to resolve an extrinsic
contribution to absorption in ice: submicron dust particles contribute by an
amount that increases with depth and corresponds well with the expected
increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The
laser pulse method allows remote mapping of gross structure in dust
concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9
figures, not included, available on request from [email protected]
The NA48 LKr calorimeter digitizer electronics chain
The 13 500 channels of the NA48 liquid-krypton electromagnetic calorimeter readout electronics were put into operation in 1997. The digitizer electronics employs a new gain switching technique that expands the dynamic range of a standard 10-bit ADC to 14 bits at 40 MHz sampling rate employing a custom-developed integrated circuit (KRYPTON). The KRYPTON has been fabricated in 1.2 μm BiCMOS technology and was successfully developed together with industry on a short timescale. The performance and the experience from the first year of the operation of the liquid-krypton calorimeter electronics will also be briefly discussed
Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS inner silicon tracker
We report on the development of evaporative fluorocarbon cooling recirculators and their control systems for the ATLAS inner silicon tracker. We have developed a prototype circulator using a dry, hermetic compressor with C/sub 3/F/sup 8/ refrigerant, and have prototyped the remote-control analog pneumatic links for the regulation of coolant mass flows and operating temperatures that will be necessary in the magnetic field and radiation environment around ATLAS. pressure and flow measurement and control use 150+ channels of standard ATLAS LMB ("Local Monitor Board") DAQ and DACs on a multi-drop CAN network administered through a BridgeVIEW user interface. A hardwired thermal interlock system has been developed to cut power to individual silicon modules should their temperatures exceed safe values. Highly satisfactory performance of the circulator under steady state, partial-load and transient conditions was seen, with proportional fluid flow tuned to varying circuit power. Future developments, including a 6 kW demonstrator with ~25 cooling circuits, are outlined
The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter
With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV
and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the
first of a new generation of high energy neutrino telescopes, reaching a scale
envisaged over 25 years ago. We describe its performance, focussing on the
capability to detect halo dark matter particles via their annihilation into
neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures.
Talk presented at the 3rd International Symposium on Sources and Detection of
Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199
- …