5,150 research outputs found

    Fluctuations of the intergalactic ionization field at redshift z ~ 2

    Full text link
    (Abridged) Aims. To probe the spectral energy distribution (SED) of the ionizing background radiation at z ~ 2 and to specify the sources contributing to the intergalactic radiation field. Methods. The spectrum of a bright quasar HS1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (1 Ryd to 0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the HeI resonance lines of the Lyman series and the HeI 504 A continuum, which are seen for the first time in any cosmic object except the Sun. Results. From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ~ 2 fluctuates at the scale of at least Delta_z ~ 0.004. This is consistent with Delta_z ~ 0.01 estimated from HeII and HI Lyman-alpha forest measurements between the redshifts 2 and 3.Comment: 29 pages, 18 figures, 3 tables, accepted for publication in A\&

    The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation

    Full text link
    We present the results of polarimetric (RR band) and multicolor photometric (BVRIJHKBVRIJHK) observations of the blazar AO 0235+16 during an outburst in 2006 December. The data reveal a short timescale of variability (several hours), which increases from optical to near-IR wavelengths; even shorter variations are detected in polarization. The flux density correlates with the degree of polarization, and at maximum degree of polarization the electric vector tends to align with the parsec-scale jet direction. We find that a variable component with a steady power-law spectral energy distribution and very high optical polarization (30-50%) is responsible for the variability. We interpret these properties of the blazar withina model of a transverse shock propagating down the jet. In this case a small change in the viewing angle of the jet, by â‰Č1o\lesssim 1^o, and a decrease in the shocked plasma compression by a factor of ∌\sim1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap

    Cubulating hyperbolic free-by-cyclic groups: the general case

    Full text link
    Let Ω:F→F\Phi:F\rightarrow F be an automorphism of the finite-rank free group FF. Suppose that G=F⋊ΩZG=F\rtimes_\Phi\mathbb Z is word-hyperbolic. Then GG acts freely and cocompactly on a CAT(0) cube complex.Comment: 36 pages, 11 figures. Version 2 contains minor corrections. Accepted to GAF

    Generating Functionals for Harmonic Expectation Values of Paths with Fixed End Points. Feynman Diagrams for Nonpolynomial Interactions

    Full text link
    We introduce a general class of generating functionals for the calculation of quantum-mechanical expectation values of arbitrary functionals of fluctuating paths with fixed end points in configuration or momentum space. The generating functionals are calculated explicitly for harmonic oscillators with time-dependent frequency, and used to derive a smearing formulas for correlation functions of polynomial and nonpolynomials functions of time-dependent positions and momenta. These formulas summarize the effect of thermal and quantum fluctuations, and serve to derive generalized Wick rules and Feynman diagrams for perturbation expansions of nonpolynomial interactions.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/28

    Time-dependent coupled-cluster method for atomic nuclei

    Full text link
    We study time-dependent coupled-cluster theory in the framework of nuclear physics. Based on Kvaal's bi-variational formulation of this method [S. Kvaal, arXiv:1201.5548], we explicitly demonstrate that observables that commute with the Hamiltonian are conserved under time evolution. We explore the role of the energy and of the similarity-transformed Hamiltonian under real and imaginary time evolution and relate the latter to similarity renormalization group transformations. Proof-of-principle computations of He-4 and O-16 in small model spaces, and computations of the Lipkin model illustrate the capabilities of the method.Comment: 10 pages, 9 pdf figure

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory

    Get PDF
    A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields is considered. This formulation is consistent with the gauge fixed formulation. Furthermore we find that canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the (classical) Poincar\'e algebra. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the classical Poincar\'e algebra.Comment: Shortened, to appear as Papid Communication-PRD/Nov/9

    Conditions for nonexistence of static or stationary, Einstein-Maxwell, non-inheriting black-holes

    Full text link
    We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein-Maxwell space-times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.Comment: 19 pages, to appear in GER

    On the Minimal Model of Anyons

    Get PDF
    We present new geometric formulations for the fractional spin particle models on the minimal phase spaces. New consistent couplings of the anyon to background fields are constructed. The relationship between our approach and previously developed anyon models is discussed.Comment: 17 pages, LaTex, no figure

    Visual clues act as a substitute for haptic feedback in robotic surgery

    Get PDF
    Objective: The lack of haptic feedback (HF) in robotic surgery is one of the major concerns of novice surgeons to that field. The superior visual appearances acquired during robotic surgery may give clues that make HF less important. Methods: We surveyed 52 individuals on their perception of HF during robotic surgery. The first group of 34 surgically inexperienced people used the da Vinci robot for their first time (drylab). The second group included 8 laparoscopic surgeons with experience up to a fifth robotic operation. The third group included 10 surgical experts with substantial experience (150-650 robotic cases). Visual analog assessment was made of perception of HF, how much HF was missed, how much the absence of HF impaired the operators' level of comfort. Robotic experts were asked if complications have occurred as a result of a lack of HF. Results: Of the first group, 50% reported the perception of HF, as did 55% of the second group and 100% of the third group (difference between group 1 and group 3: p<0.05). The first group missed HF for 6.5; the second group for 4.3, and the third group for 4 (difference between groups 1 and 3: p<0.05). The surgical experts claimed to have missed HF for 7.2 s when they first started robotic surgery (Difference to now: p<0.05). The lack of HF caused discomfort for the first group of 4; for the second group of 4,4, and for the third group of 2,6. One complication was reported by the robotic experts as resulting from the lack of HF. Conclusions: The data support the conclusion that even beginners quickly experience the perception of HF when performing robotic surgery. With more experience, perception of HF and the level of comfort with robotic surgery increases significantly. This perception of HF makes "real” HF less important and demonstrates that its importance is overestimated by novices in robotic surger
    • 

    corecore