5,359 research outputs found

    DenseReg: fully convolutional dense shape regression in-the-wild

    Get PDF
    In this paper we propose to learn a mapping from image pixels into a dense template grid through a fully convolutional network. We formulate this task as a regression problem and train our network by leveraging upon manually annotated facial landmarks “in-the-wild”. We use such landmarks to establish a dense correspondence field between a three-dimensional object template and the input image, which then serves as the ground-truth for training our regression system. We show that we can combine ideas from semantic segmentation with regression networks, yielding a highly-accurate ‘quantized regression’ architecture. Our system, called DenseReg, allows us to estimate dense image-to-template correspondences in a fully convolutional manner. As such our network can provide useful correspondence information as a stand-alone system, while when used as an initialization for Statistical Deformable Models we obtain landmark localization results that largely outperform the current state-of-the-art on the challenging 300W benchmark. We thoroughly evaluate our method on a host of facial analysis tasks, and demonstrate its use for other correspondence estimation tasks, such as the human body and the human ear. DenseReg code is made available at http://alpguler.com/DenseReg.html along with supplementary materials

    Bioactive supramolecular peptide nanofibers for regenerative medicine

    Get PDF
    Cataloged from PDF version of article.Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Ascending Combinatorial Auctions with Risk Averse Bidders

    Get PDF
    Ascending combinatorial auctions are being used in an increasing number of spectrum sales worldwide, as well as in other multi-item markets in procurement and logistics. Much research has focused on pricing and payment rules in such ascending auctions. However, recent game-theoretical research has shown that such auctions can even lead to inefficient perfect Bayesian equilibria with risk-neutral bidders. There is a fundamental free-rider problem without a simple solution, raising the question whether ascending combinatorial auctions can be expected to be efficient in the field. Risk aversion is arguably a significant driver of bidding behavior in high-stakes auctions. We analyze the impact of risk aversion on equilibrium bidding strategies and efficiency in a threshold problem with one global and several local bidders. Due to the underlying free-rider problem, the impact of risk-aversion on equilibrium bidding strategies of local bidders is not obvious. We characterize the necessary and sufficient conditions for the perfect Bayesian equilibria of the ascending auction mechanism to have the local bidders to drop at the reserve price. Interestingly, in spite of the free-riding opportunities of local bidders, risk-aversion reduces the scope of the non-bidding equilibrium. The results help explain the high efficiency of ascending combinatorial auctions observed in the lab. © 2015, Springer Science+Business Media Dordrecht

    A Spectroscopic Survey of a Sample of Active M Dwarfs

    Get PDF
    A moderate resolution spectroscopic survey of Fleming's sample of 54 X-ray selected M dwarfs with photometric distances less than 25 pc is presented. Radial and rotation velocities have been measured by fits to the H-alpha profiles. Radial velocities have been measured by cross correlation. Artificial broadening of an observed spectrum has produced a relationship between H-alpha FWHM and rotation speed, which we use to infer rotation speeds for the entire sample by measurement of the H-alpha emission line. We find 3 ultra-fast rotators (UFRs, vsini > 100km/s), and 8 stars with 30 < vsini < 100 km/s. The UFRs have variable emission. Cross-correlation velocities measured for ultra-fast rotators (UFRs) are shown to depend on rotation speed and the filtering used. The radial velocity dispersion of the sample is 17 km/s. A new double emission line spectroscopic binary with a period of 3.55 days has been discovered, and another known one is in the sample. Three other objects are suspected spectroscopic binaries, and at least six are visual doubles. The only star in the sample observed to have significant lithium is a known TW Hya Association member, TWA 8A. These results show that there are a number of young (< 10^8 yr) and very young (< 10^7 yr) low mass stars in the immediate solar neighbourhood. The H-alpha activity strength does not depend on rotation speed. Our fast rotators are less luminous than similarly fast rotators in the Pleiades. They are either younger than the Pleiades, or gained angular momentum in a different way.Comment: 38 pages incl. 14 figures and 4 tables, plus 12 pages of table for electronic journal only; LaTeX, aastex.cls. Accepted 07/18/02 for publication in The Astronomical Journa

    Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents

    Get PDF
    Cataloged from PDF version of article.Magnetic resonance imaging (MRI) attracts great attention in cellular and molecular imaging due to its non-invasive and multidimensional tomographic capabilities. Development of new contrast agents is necessary to enhance the MRI signal in tissues of interest. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents for signal enhancement as they have revealed extraordinary magnetic properties at the nanometre size and their toxicity level is very low compared to other commercial contrast agents. In this study, we developed a new method to functionalize the surface of SPIONs. Peptide amphiphile molecules are used to coat SPIONs non-covalently to provide water solubility and to enhance biocompatibility. Superparamagnetic properties of the peptide-SPION complexes and their ability as contrast agents are demonstrated. In vitro cell culture experiments reveal that the peptide-SPION complexes are biocompatible and are localized around the cells due to their peptide coating

    Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct

    Get PDF
    Cataloged from PDF version of article.The extracellular matrix (ECM) creates a dynamic environment around the cells in the developing central nervous system, providing them with the necessary biochemical and biophysical signals. Although the functions of many ECM molecules in neuronal development have been individually studied in detail, the combinatorial effects of multiple ECM components are not well characterized. Here we demonstrate that the expression of collagen and laminin-1 (lam-1) are spatially and temporally correlated during embryonic and post-natal development of the cerebellum. These changes in ECM distribution correspond to specific stages of Purkinje neuron (PC) migration, somatic monolayer formation and polarization. To clarify the respective roles of these ECM molecules on PC development, we cultured cerebellar neurons on a hybrid matrix comprised of collagen and a synthetic peptide amphiphile nanofiber bearing a potent lam-1 derived bioactive IKVAV peptide epitope. By systematically varying the concentration and ratio of collagen and the laminin epitope in the matrix, we could demonstrate a synergistic relationship between these two ECM components in controlling multiple aspects of PC maturation. An optimal ratio of collagen and IKVAV in the matrix was found to promote maximal PC survival and dendrite growth, while dendrite penetration into the matrix was enhanced by a high IKVAV to collagen ratio. In addition, the laminin epitope was found to guide PC axon development. By combining our observations in vivo and in vitro, we propose a model of PC development where the synergistic effects of collagen and lam-1 play a key role in migration, polarization and morphological maturation of PCs. This journal is © the Partner Organisations 2014

    Bioactive nanomaterials for neural engineering

    Get PDF
    Nervous system is a highly complex interconnected network and higher organisms including humans have limited neural regeneration capacity. Neurodegenerative diseases result in significant cognitive, sensory, or motor impairments. Following an injury in the neural network, there is a balance between promotion and inhibition of regeneration and this balance is shifted to different directions in central nervous system (CNS) and peripheral nervous system (PNS). More regeneration capacity is observed in the PNS compared to the CNS. Although, several mechanisms play roles in the inhibitory and growth-promoting natures of the CNS and PNS, extracellular matrix (ECM) elements are key players in this process. ECM is a three-dimensional environment where the cells migrate, proliferate, and differentiate (Rutka et al. 1988; Pan et al. 1997). After a comprehensive investigation of the interactions between the ECM proteins and cell receptors, the ECM environment was found to regulate significant cellular processes such as survival, proliferation, differentiation, and migration (Yurchenco and Cheng 1994; Aszodi et al. 2006). Its components have major roles not only in neurogenesis during development of the nervous system but also in normal neural functioning during adulthood (Hubert et al. 2009). © Springer International Publishing Switzerland 2016

    A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing

    Get PDF
    In this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise control of the electrode spacing, we employ a hydrodynamic focusing microfluidic device and control the width of the etching solution stream. The focused widths of the etchant solution and the etching time determine the gap formed between the electrodes. Using the same microfluidic device, we can fabricate integrated 3D electrodes with different electrode gaps. We have demonstrated the functionality of these electrodes using an impedimetric particle counting setup. Using 3D microelectrodes with a diameter of 25 μm, we have detected 6 μm-diameter polystyrene beads in a buffer solution as well as erythrocytes in a PBS solution. We study the effect of electrode spacing on the signal-to-noise ratio of the impedance signal and we demonstrate that the smaller the electrode spacing the higher the signal obtained from a single microparticle. The sample stream is introduced to the system using the same hydrodynamic focusing device, which ensures the alignment of the sample in between the electrodes. Utilising a 3D hydrodynamic focusing approach, we force all the particles to go through the sensing region of the electrodes. This fabrication scheme not only provides a very low-cost and easy method for rapid prototyping, but which can also be used for applications requiring 3D electric field focused through a narrow section of the microchannel. © 2015 IOP Publishing Ltd

    Size-controlled conformal nanofabrication of biotemplated three-dimensional TiO2 and ZnO nanonetworks

    Get PDF
    Cataloged from PDF version of article.A solvent-free fabrication of TiO2 and ZnO nanonetworks is demonstrated by using supramolecular nanotemplates with high coating conformity, uniformity, and atomic scale size control. Deposition of TiO2 and ZnO on three-dimensional nanofibrous network template is accomplished. Ultrafine control over nanotube diameter allows robust and systematic evaluation of the electrochemical properties of TiO2 and ZnO nanonetworks in terms of size-function relationship. We observe hypsochromic shift in UV absorbance maxima correlated with decrease in wall thickness of the nanotubes. Photocatalytic activities of anatase TiO2 and hexagonal wurtzite ZnO nanonetworks are found to be dependent on both the wall thickness and total surface area per unit of mass. Wall thickness has effect on photoexcitation properties of both TiO2 and ZnO due to band gap energies and total surface area per unit of mass. The present work is a successful example that concentrates on nanofabrication of intact three-dimensional semiconductor nanonetworks with controlled band gap energies
    corecore