8 research outputs found

    Modeling and analysis of energy distribution networks using switched differential systems

    No full text
    It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft on the occasion of his 60th birthday. We study the dynamics of energy distribution networks consisting of switching power converters and multiple (dis-)connectable modules. We use parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads. Elements of the behavioral system theory such as linear differential behaviors and quadratic differential forms are crucial in our analysis

    Current inverting metamutator, its implementation with a new single active device and applications (vol 97, pg 15, 2019)

    No full text
    Voltage Inverting Metamutator (VIM) and Current

    Applications of CNN with trapezoidal activation function

    No full text
    This paper presents some applications of cellular neural network (CNN) scheme employing a new nonlinear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly nonseparable data points and realize Boolean operations (including XOR) by using only a single-layer CNN

    Stability of CNN with trapezoidal activation function

    No full text
    This paper presents the stability conditions of cellular neural network (CNN) scheme employing a new nonlinear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly nonseparable data points and realize Boolean operations (including XOR) by using only a single-layer CNN. In order to simplify the stability analysis, a feedback matrix W is defined as a function of the feedback template A and 2D equations are converted to 1D equations. The stability conditions of CNN with TAF are investigated and a sufficient condition for the existence of a unique equilibrium and global asymptotic stability is derived

    The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma

    No full text
    Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clinical application of TRAIL therapeutics inefficient. In this study, we undertook a chemical screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone methyl transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs

    Diagnosis, treatment and prevention of pediatric obesity: consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics

    No full text
    corecore