82 research outputs found

    Microsecond Time-Resolved Absorption Spectroscopy Used to Study CO Compounds of Cytochrome bd from Escherichia coli

    Get PDF
    Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in oneelectron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (t,1.5 ms) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (t,16 ms). It returns from the b-hemes to heme d with t,180 ms. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (t,16 ms) yielding a transient hexacoordinate state (CO-Fe2+ -L). Then the ligand slowly (t,30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (t,20 ms), some heme b558 (t,0.2–3 ms), and finally migrates from heme d to heme b595 (t,24 ms) in ,5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions

    Mechanisms involved in lung cancer development in COPD

    No full text
    Lung cancer and chronic obstructive pulmonary disease (COPD) are leading causes of morbidity and mortality worldwide. They share a common environmental risk factor in cigarette smoke exposure and a genetic predisposition represented by the incidence of these diseases in only a fraction of smokers. COPD is also a major independent risk factor for lung carcinoma, among long-term smokers. Smokers with COPD also have a higher risk of developing a specific histological subtype of non-small cell lung cancer termed squamous cell carcinoma. For these reasons the focus of this review is on the potential pathogenic molecular links between tobacco smoking-related COPD and squamous cell carcinoma. We believe that we need to promote more studies on the molecular and cellular pathobiology of smokers with premalignant bronchial lesions of the squamous cell lung carcinoma compared with a control group of smokers with and without COPD to unravel the complex molecular interactions between COPD and early squamous cell lung carcinoma. These studies should also look at younger healthy smokers in combination with risk models of lung cancer and COPD. Overall these studies may allow the discovery of new molecular targets of the early carcinogenesis process that in the foreseeable future may render the early diagnosis and treatment, and may be even the prevention, of invasive squamous cell lung carcinoma a reality

    COPD pathology in the small airways

    No full text
    In the last quarter of century, the analysis of small airways specimens obtained from chronic obstructive pulmonary disease (COPD) patients compared with those from a control group of age-matched smokers with normal lung function has provided novel insights on the potential role of the different inflammatory and structural cells, pro/anti-inflammatory mediators and intracellular signalling pathways, contributing to a better knowledge of the pathogenesis of stable COPD. This also has provided a scientific rationale for new drugs discovery and targeting to the small airways. This review summarizes and discusses the pathology of small airways of stable COPD patients, of different severity, compared with control smokers with normal lung function
    • …
    corecore