61 research outputs found

    Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk

    Get PDF
    Breast cancer is a major cause of cancer-related deaths in women. It is known that obesity is one of the risk factors of breast cancer. The subject of our interest was genes: FTO, MC4R and NRXN3–associated with obesity. In this study we have analyzed frequencies of genomic variants in FTO, MC4R and NRXN3 in the group of 134 breast cancer patients. We genotyped two polymorphic sites located in FTO gene (rs993909 and rs9930506), one polymorphic site of MC4R gene (rs17782313) and one polymorphic site of NRXN3 gene (rs10146997). Our hypothesis was that above mentioned SNPs could participate in carcinogenesis. Our research has showed that only rs10146997 was significantly (P = 0.0445) associated with higher risk of breast cancer development (OR = 0.66 (95% CI 0.44–0.99)). Moreover, G allele carriers in rs10146997 of the NRXN3 gene were the youngest patients at onset of breast cancer. On the basis of our research we suggest that further functional may elucidate the role of genomic variation in breast cancer development

    Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

    Get PDF
    Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.Universidad de Costa Rica/[814-B8-257]/UCR/Costa RicaUniversidad de Costa Rica/[814-B6-140]/UCR/Costa RicaIDEA WILD/[]//Estados UnidosSociedad Colombiana de Orquideología/[]/SCO/ColombiaFundação de Amparo à Pesquisa do Estado de São Paulo/[11/08308-9]/FAPESP/BrasilFundação de Amparo à Pesquisa do Estado de São Paulo/[13/19124-1]/FAPESP/BrasilSwiss Orchid Foundation/[]//SuizaRoyal Botanic Gardens, Kew/[]//InglaterraSwedish Research Council/[2019-05191]//SueciaSwedish Foundation for Strategic Research/[FFL15-0196]/SSF/SueciaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL

    Intoxicação por monofluoroacetato em animais

    Full text link

    PPARgamma-2 and ADRB3 polymorphisms in connective tissue diseases and lipid disorders

    No full text
    Bogna Grygiel-Górniak,1 Iwona Ziółkowska-Suchanek,2 Elżbieta Kaczmarek,3 Maria Mosor,2 Jerzy Nowak,2 Mariusz Puszczewicz1 1Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland; 2Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; 3Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland Background: The aim of the research genetic study was to investigate the association between variants (C1431T and Pro12Ala) of the peroxisome proliferator-activated receptor (PPARgamma-2) gene, Trp64Arg polymorphism of the beta-3-adrenergic receptor gene and lipid profile in Polish population including group of 103 patients with connective tissue disease (CTD) and 103 sex- and age-matched controls in context of statin use. Methods: Anthropometric and biochemical parameters were measured by routine methods, followed by genotyping (TagMan® Genotyping Assays, PCR-restriction fragment length polymorphism analysis). Nearly 30% of CTD patients used statins and 10% of the control group. Results: Although there were no differences between alleles and genotypes prevalence between CTD vs control groups, interesting lipid-gene associations were noted in this study. A higher level of triglycerides (TAG) and TAG/high-density lipoprotein (HDL) ratios was observed in CTD patients compared to controls. Similar differences were noted in CTD and control groups without statin treatment. Atherogenic markers: the atherogenic index of plasma, TAG/HDL and low-density lipoprotein/HDL ratio were low in the analyzed groups. Of the six analyzed polymorphisms, the Pro12Pro or C14131C or Trp64Trp genotypes were related to higher TAG and TAG/HDL ratios in patients with CTD; however, the highest TAG values were observed in the presence of the Trp64Trp genotype. Conclusion: Lipid disorders were present in both groups independent of statin treatment (mixed dyslipidemia and hypercholesterolemia were observed in the CTD and control groups, respectively). The risk of dyslipidemia increases with age. The presence of Pro12Pro, C14131C and Trp64Trp genotypes is related to higher TAG level in CTDs, and of these the Trp64Trp variant most reliably predicts hypertriglyceridemia. Keywords: C1431T, Pro12Ala, Trp64Arg polymorphisms, lipoproteins, rheumatic diseases, statin

    The stoichiometric ratios (C:N:P) in a pelagic food web under experimental conditions

    No full text
    Interactions between phytoplankton and zooplankton affect the overall functioning of lakes. Herbivores are habitually confronted with food of inferior quality, usually a result of low nutrient concentrations in plant material. Large-bodied cladocerans are better competitors for food than small-bodied species but they are more vulnerable to low food quality. Understanding the effects of food quality on zooplankton structure and competition between small – large bodied herbivorous is of considerable interest. We want to find out how differences in C:N:P ratios between phytoplankton and zooplankton communities affect their abundances in a freshwater food web. We want also to assess the role of phytoplankton and zooplankton as sinks of the phosphorus and nitrogen. Therefore, we conducted a 31-day mesocosms experiment with water from a mesotrophic and a eutrophic lake (with natural plankton communities). To simulate changes in the plankton communities large-bodied Daphnia magna and Daphnia pulicaria were added. Samples for zooplankton, phytoplankton and water chemistry were taken every 10 days. Samples for elemental analysis (C:N:P) of seston and zooplankton were collected on the first, and on the final day of the experiment. Our mesocosms experiment showed mismatch in C:P between seston (high) and zooplankton (low), which suggests that most of the phosphorus is incorporated in zooplankton biomass. This evidenced that zooplankton is an effective sink of phosphorus, while nitrogen is accumulated mainly by primary producers. Our results also indicated more stability in stoichiometry with increasing trophic levels of organisms. However, there were significant changes in the zooplankton structure. The increasing dominance of large Daphnia resulted in reduction of C:P ratio in zooplankton. Low food quality (C:P) did not limit the growth of large Daphnia in the experimental conditions, which competed effectively with small planktonic cladocerans and with Rotifera. Over time, inedible algae began to dominate resulting in increase of relative biomass of periphyton grazers, which suggests that plankton community is transformed into littoral system in mesocosms for about 30 days

    Direct and indirect impacts of fish on crustacean zooplankton in experimental mesocosms

    No full text
    Understanding the factors that regulate phytoplankton and zooplankton is an important goal of aquatic ecologists; however, much remains unknown because of complex interactions between phytoplankton, zooplankton, and fish. Zooplankton, in particular cladocerans, can be regulated by bottom–up factors either via food quantity or food quality in terms of polyunsaturated fatty acids (PUFA) or phosphorus (P) contents in phytoplankton. Fish can recycle nutrients and in turn change the PUFA and P contents of algal resources, thus modifying bottom–up regulation. Furthermore, fish can change phytoplankton structure through consumption of cladocerans which selectively graze phytoplankton. We conducted a mesocosm (300 L) experiment to determine how trophic state and fish affected crustacean dynamics. The mesocosms were filled with water containing natural plankton from the eutrophic Lake Jorzec and mesotrophic Lake Majcz (Northeastern Poland), and we manipulated fish presence/absence. We also conducted a complementary life-table experiment to determine how trophic state and fish nonconsumptively affected demographic parameters of the dominant cladocerans in the mesocosms. Small and large cladoceran species responded differently to food quantity and quality. Small-bodied Ceriodaphnia were regulated mainly by resource concentrations (i.e., food quantity), while large species were limited by PUFAs (i.e., food quality). Fish likely increased food quality in terms of PUFA, primarily eicosapentaenoic acids (EPA), thus providing conditions for more successful development of Daphnia than in the fish-free treatments. Phosphorus in the seston was likely limiting for zooplankton. However, food quality in terms of phosphorus was likely less important than PUFA because zooplankton can accumulate nutrients in their body
    corecore