40,965 research outputs found

    Branching process approach for Boolean bipartite networks of metabolic reactions

    Full text link
    The branching process (BP) approach has been successful in explaining the avalanche dynamics in complex networks. However, its applications are mainly focused on unipartite networks, in which all nodes are of the same type. Here, motivated by a need to understand avalanche dynamics in metabolic networks, we extend the BP approach to a particular bipartite network composed of Boolean AND and OR logic gates. We reduce the bipartite network into a unipartite network by integrating out OR gates, and obtain the effective branching ratio for the remaining AND gates. Then the standard BP approach is applied to the reduced network, and the avalanche size distribution is obtained. We test the BP results with simulations on the model networks and two microbial metabolic networks, demonstrating the usefulness of the BP approach

    Spatial Corrections of ROSAT HRI Observations

    Get PDF
    X-ray observations with the ROSAT High Resolution Imager (HRI) often have spatial smearing on the order of 10 arcsec (Morse 1994). This degradation of the intrinsic resolution of the instrument (5 arcsec) can be attributed to errors in the aspect solution associated with the wobble of the space craft or with the reacquisition of the guide stars. We have developed a set of IRAF/PROS and MIDAS/EXSAS routines to minimize these effects. Our procedure attempts to isolate aspect errors that are repeated through each cycle of the wobble. The method assigns a 'wobble phase' to each event based on the 402 second period of the ROSAT wobble. The observation is grouped into a number of phase bins and a centroid is calculated for each sub-image. The corrected HRI event list is reconstructed by adding the sub-images which have been shifted to a common source position. This method has shown approx. 30% reduction of the full width half maximum (FWHM) of an X-ray observation of the radio galaxy 3C 120. Additional examples are presented.Comment: AandA latex (6 pages with 7 embedded postscript figures). Scheduled for publication in the 1 Dec issue of Astron. Astrophys. Suppl. Serie

    Statistical derivation of design criteria for liquid rocket combustion instability Final report

    Get PDF
    Statistical correlation between engine design and combustion stability in liquid propellant rocket engine

    Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    Get PDF
    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented

    The Globular Cluster Systems in the Coma Ellipticals. III: The Unique Case of IC 4051

    Full text link
    Using archival \hst WFPC2 data, we derive the metallicity distribution, luminosity function, and spatial structure of the globular cluster system around IC 4051, a giant E galaxy on the outskirts of the Coma cluster core. The metallicity distribution derived from the (V-I) colors has a mean [Fe/H] = -0.3, a near-complete lack of metal-poor clusters, and only a small metallicity gradient with radius; it may, however, have two roughly equal metallicity subcomponents, centered at [Fe/H] ~ 0.0 and -1.0. The luminosity distribution (GCLF) has the Gaussian-like form observed in all other giant E galaxies, with a peak (turnover) at V = 27.8, consistent with a Coma distance of 100 Mpc. The radial profiles of both the GCS and the halo light show an unusually steep falloff which may indicate that the halo of this galaxy has been tidally truncated. Lastly, the specific frequency of the GCS is remarkably large: we find S_N = 11 +- 2, resembling the central cD-type galaxies even though IC 4051 is not a cD or brightest cluster elliptical. A formation model consistent with most of the observations would be that this galaxy was subjected to removal of a large fraction of its protogalactic gas shortly after its main phase of globular cluster formation, probably by its first passage through the Coma core. Since then, no significant additions due to accretions or mergers have taken place.Comment: 24 pp. plus 13 Figures. Postscript file for the complete paper can also be downloaded from http://www.physun.mcmaster.ca/~harris/WEHarris.html. Astron.J., in pres

    Symmetric photon-photon coupling by atoms with Zeeman-split sublevels

    Full text link
    We propose a simple scheme for highly efficient nonlinear interaction between two weak optical fields. The scheme is based on the attainment of electromagnetically induced transparency simultaneously for both fields via transitions between magnetically split F=1 atomic sublevels, in the presence of two driving fields. Thereby, equal slow group velocities and symmetric cross-coupling of the weak fields over long distances are achieved. By simply tuning the fields, this scheme can either yield giant cross-phase modulation or ultrasensitive two-photon switching.Comment: Modified scheme, 4 pages, 1 figur

    Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors

    Full text link
    The advantages of light and matter-wave Sagnac interferometers -- large area on one hand and high rotational sensitivity per unit area on the other -- can be combined utilizing ultra-slow light in cold atomic gases. While a group-velocity reduction alone does not affect the Sagnac phase shift, the associated momentum transfer from light to atoms generates a coherent matter-wave component which gives rise to a substantially enhanced rotational signal. It is shown that matter-wave sensitivity in a large-area interferometer can be achieved if an optically dense vapor at sub-recoil temperatures is used. Already a noticeable enhancement of the Sagnac phase shift is possible however with much less cooling requirements.Comment: 4 pages, 3 figure
    corecore