14 research outputs found

    THE ROLE OF MESOZOIC GEODYNAMIC EVENTS IN FORMATION OF SEDIMENTARY BASINS ON THE FRAMING OF THE EASTERN MONGOL-OKHOTSK OROGENIC BELT

    Get PDF
    The Mongol-Okhotsk orogenic belt, finally formed in the end of the Mesozoic as a result of later tectonic events, is divided into two flanks: western and eastern. Its formation is obviously due to a regular change in geodynamic events significantly obscured by late tectonic and magmatic processes in the western flank and more clearly defined in the eastern flank from both magmatic and stratified formations. The early changes in geodynamic environment are most clearly determined by the formation of magmatic complexes whose completion is usually accompanied by the strata formation. Stratons framing the eastern flank of the Mongol-Okhotsk orogenic belt in the Mesozoic were formed in sedimentary basins, which are currently isolated to the Krestovkinsky and Ogodzhinsky basins along the southern border and to the Strelkinsky, Malotyndinsky, Toromsky and Udsky basins along the northern border. The deposition environment varied from deep-sea marine to continental. The article attempts to correlate the cross-sections of sedimentary basins on the framing of the eastern Mongol-Okhotsk orogenic belt and considers similarity or difference in their structure, conditions of sedimentation, tectonic positions and dependence of their evolution on geodynamic processes in the regio

    ПозднСмСзозойскиС Π°Π΄Π°ΠΊΠΈΡ‚ΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈΡ‚Ρ‹ юТного обрамлСния восточного Π·Π²Π΅Π½Π° Монголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΎΠ³ΠΎ ΠΎΡ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ пояса: вСщСствСнный состав, гСодинамичСскиС условия формирования

    Get PDF
    Granitoids of the Magdagachi complex were studied using new and published petrochemical, geochemical and isotopic (Sm-Nd, Rb-Sr) data. Granitoid samples were taken from the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt (MOOB). Their analysis shows increased concentrations of Sr, Ba, Eu; reduced concentrations of Nb, Ta; abnormally low concentrations of HREE, Y and Yb; significant fractionation of REE; and high Sr/Y ratios. Therefore, the Magdagachi granitoids are "classical" adakites that may have formed at a depth of more than 45 km due to melting of eclogite with a garnet content of 20–50 %. Such conditions could exist under subduction as a result of melting of the frontal or lateral parts of the slab in subduction windows formed during oblique subduction at an orthogonal sinking angle. Highly metamorphosed lower crust Precambrian formations were also melted, and a source of parental melts could have been composed of both the mantle and crustal materials. Two tectonic scenarios are proposed that could have been accompanied by the formation of Magdagachi granitoids. Both scenarios refer to subduction processes, but differ in interactions between various regional structures in the Late Mesozoic. Богласно Π½ΠΎΠ²Ρ‹ΠΌ ΠΈ ΡƒΠΆΠ΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ΠΌ пСтрохимичСским, гСохимичСским ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΌ (Sm-Nd, Rb-Sr) Π΄Π°Π½Π½Ρ‹ΠΌ, для Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄ΠΎΠ² магдагачинского комплСкса юТного обрамлСния восточного Π·Π²Π΅Π½Π° Монголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΎΠ³ΠΎ ΠΎΡ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ пояса установлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ концСнтрациями Sr, Ba, Eu ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ содСрТаниями Nb, Ta, аномально Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ концСнтрациями HREE, Y ΠΈ Yb; Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов; высокими ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΠΈ Sr/Y. Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ говорят ΠΎ принадлСТности ΠΏΠΎΡ€ΠΎΠ΄ комплСкса ΠΊ «классичСским» Π°Π΄Π°ΠΊΠΈΡ‚Π°ΠΌ. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π΅ Π±ΠΎΠ»Π΅Π΅ 45 ΠΊΠΌ Π·Π° счСт плавлСния эклогита с содСрТаниСм Π³Ρ€Π°Π½Π°Ρ‚Π° 20–50 %. Π’Π°ΠΊΠΈΠ΅ условия ΠΌΠΎΠ³Π»ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² обстановкС субдукции Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ плавлСния Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ ΠΈΠ»ΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… частСй слэба Π² субдукционных ΠΎΠΊΠ½Π°Ρ…, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ косой субдукции ΠΈ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ ΡƒΠ³Π»Π΅ погруТСния. ΠŸΡ€ΠΈ этом плавлСнию ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π»ΠΈΡΡŒ Ρ‚Π°ΠΊΠΆΠ΅ высокомСтаморфизованныС Π½ΠΈΠΆΠ½Π΅ΠΊΠΎΡ€ΠΎΠ²Ρ‹Π΅ докСмбрийскиС образования, Π° Π² составС источника Ρ€ΠΎΠ΄ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… расплавов ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎ участиС ΠΊΠ°ΠΊ ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½ΠΎΠ΅, Ρ‚Π°ΠΊ ΠΈ ΠΊΠΎΡ€ΠΎΠ²ΠΎΠ΅ вСщСство. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π²Π° тСктоничСских сцСнария, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³Π»ΠΈ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Ρ‚ΡŒΡΡ становлСниСм Π³Ρ€Π°Π½ΠΈΡ‚ΠΎΠΈΠ΄ΠΎΠ² магдагачинского комплСкса. Оба сцСнария ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ условиям субдукционных процСссов, Π½ΠΎ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ взаимодСйствиСм Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… структур Π² позднСмСзозойскоС врСмя.

    Π ΠžΠ›Π¬ ΠœΠ•Π—ΠžΠ—ΠžΠ™Π‘ΠšΠ˜Π₯ Π“Π•ΠžΠ”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘ΠžΠ‘Π«Π’Π˜Π™ Π’ Π€ΠžΠ ΠœΠ˜Π ΠžΠ’ΠΠΠ˜Π˜ ΠžΠ‘ΠΠ”ΠžΠ§ΠΠ«Π₯ Π‘ΠΠ‘Π‘Π•Π™ΠΠžΠ’ ΠžΠ‘Π ΠΠœΠ›Π•ΠΠ˜Π― Π’ΠžΠ‘Π’ΠžΠ§ΠΠžΠ“Πž ЀЛАНГА ΠœΠžΠΠ“ΠžΠ›Πž-ОΠ₯ΠžΠ’Π‘ΠšΠžΠ“Πž ΠžΠ ΠžΠ“Π•ΠΠΠžΠ“Πž ПОЯБА

    Get PDF
    The Mongol-Okhotsk orogenic belt, finally formed in the end of the Mesozoic as a result of later tectonic events, is divided into two flanks: western and eastern. Its formation is obviously due to a regular change in geodynamic events significantly obscured by late tectonic and magmatic processes in the western flank and more clearly defined in the eastern flank from both magmatic and stratified formations. The early changes in geodynamic environment are most clearly determined by the formation of magmatic complexes whose completion is usually accompanied by the strata formation. Stratons framing the eastern flank of the Mongol-Okhotsk orogenic belt in the Mesozoic were formed in sedimentary basins, which are currently isolated to the Krestovkinsky and Ogodzhinsky basins along the southern border and to the Strelkinsky, Malotyndinsky, Toromsky and Udsky basins along the northern border. The deposition environment varied from deep-sea marine to continental. The article attempts to correlate the cross-sections of sedimentary basins on the framing of the eastern Mongol-Okhotsk orogenic belt and considers similarity or difference in their structure, conditions of sedimentation, tectonic positions and dependence of their evolution on geodynamic processes in the regionМонголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΈΠΉ ΠΎΡ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ пояс, ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠΉΡΡ Π² ΠΊΠΎΠ½Ρ†Π΅ мСзозоя, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½ΠΈΡ… тСктоничСских событий Π±Ρ‹Π» Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ Π½Π° Π΄Π²Π° Ρ„Π»Π°Π½Π³Π°: Π·Π°ΠΏΠ°Π΄Π½Ρ‹ΠΉ ΠΈ восточный. Π’ Π΅Π³ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ прослСТиваСтся Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ гСодинамичСских процСссов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Π·Π°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ Ρ„Π»Π°Π½Π³Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Β«Π·Π°Ρ‚ΡƒΡˆΠ΅Π²Π°Π½Ρ‹Β» ΠΏΠΎΠ·Π΄Π½ΠΈΠΌΠΈ тСктоничСскими ΠΈ магматичСскими событиями, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… восточного Ρ„Π»Π°Π½Π³Π° эти процСссы ΠΌΠ΅Π½Π΅Π΅ искаТСны ΠΈ Ρ„ΠΈΠΊΡΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΡŽ ΠΊΠ°ΠΊ магматичСских, Ρ‚Π°ΠΊ ΠΈ стратифицированных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Начало измСнСния гСодинамичСских условий Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‡Π΅Ρ‚ΠΊΠΎ опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ магматичСских комплСксов, Π° ΠΈΡ… Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, сопровоТдаСтся ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ стратонов. Π‘Ρ‚Ρ€Π°Ρ‚ΠΎΠ½Ρ‹ Π² ΠΎΠ±Ρ€Π°ΠΌΠ»Π΅Π½ΠΈΠΈ восточного Ρ„Π»Π°Π½Π³Π° Монголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΎΠ³ΠΎ ΠΎΡ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ пояса Π² ΠΌΠ΅Π·ΠΎΠ·ΠΎΠ΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² осадочных бассСйнах, Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² настоящСС врСмя обособлСны вдоль юТной Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π² ΠšΡ€Π΅ΡΡ‚ΠΎΠ²ΠΊΠΈΠ½ΡΠΊΠΈΠΉ ΠΈ ОгодТинский бассСйны, Π° вдоль сСвСрной – Π² БтрСлкинский, ΠœΠ°Π»ΠΎΡ‚Ρ‹Π½Π΄ΠΈΠ½ΡΠΊΠΈΠΉ, Воромский ΠΈ Удский бассСйны. НакоплСниС осадков происходило Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях: ΠΎΡ‚ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… морских Π΄ΠΎ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ…. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° коррСляция Ρ€Π°Π·Ρ€Π΅Π·ΠΎΠ² осадочных бассСйнов Π² ΠΎΠ±Ρ€Π°ΠΌΠ»Π΅Π½ΠΈΠΈ восточного Ρ„Π»Π°Π½Π³Π° Монголо-ΠžΡ…ΠΎΡ‚ΡΠΊΠΎΠ³ΠΎ ΠΎΡ€ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ пояса; рассматриваСтся сходство ΠΈΠ»ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ составов, возраста, условий осадконакоплСния, тСктоничСских ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈΡ… ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΎΡ‚ измСнСния гСодинамичСских процСссов Π² Ρ€Π΅Π³ΠΈΠΎΠ½Π΅

    Late Mesozoic adakite granites of the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt: material composition and geodynamic conditions of formation

    Get PDF
    Granitoids of the Magdagachi complex were studied using new and published petrochemical, geochemical and isotopic (Sm-Nd, Rb-Sr) data. Granitoid samples were taken from the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt (MOOB). Their analysis shows increased concentrations of Sr, Ba, Eu; reduced concentrations of Nb, Ta; abnormally low concentrations of HREE, Y and Yb; significant fractionation of REE; and high Sr/Y ratios. Therefore, the Magdagachi granitoids are "classical" adakites that may have formed at a depth of more than 45 km due to melting of eclogite with a garnet content of 20–50 %. Such conditions could exist under subduction as a result of melting of the frontal or lateral parts of the slab in subduction windows formed during oblique subduction at an orthogonal sinking angle. Highly metamorphosed lower crust Precambrian formations were also melted, and a source of parental melts could have been composed of both the mantle and crustal materials. Two tectonic scenarios are proposed that could have been accompanied by the formation of Magdagachi granitoids. Both scenarios refer to subduction processes, but differ in interactions between various regional structures in the Late Mesozoic

    Secure and Efficient Matrix Multiplication with MapReduce

    No full text
    International audienceMapReduce is one of the most popular distributed programming paradigms that allows processing big data sets in parallel on a cluster. MapReduce users often outsource data and computations to a public cloud, which yields inherent security concerns. In this paper, we consider the problem of matrix multiplication and one of the most efficient matrix multiplication algorithms: the Strassen-Winograd (SW) algorithm. Our first contribution is a distributed MapReduce algorithm based on SW. Then, we tackle the security concerns that occur when outsourcing matrix multiplication computation to a honest-but-curious cloud i.e., that executes tasks dutifully, but tries to learn as much information as possible. Our main contribution is a secure distributed MapReduce algorithm called S2M3 (Secure Strassen-Winograd Matrix Multiplication with MapReduce) that enjoys security guarantees such as: none of the cloud nodes can learn the input or the output data. We formally prove the security properties of S2M3 and we present an empirical evaluation devoted to show its efficiency
    corecore