7 research outputs found
Gorenstein homological algebra and universal coefficient theorems
We study criteria for a ring—or more generally, for a small category—to be Gorenstein and for a module over it to be of finite projective dimension. The goal is to unify the universal coefficient theorems found in the literature and to develop machinery for proving new ones. Among the universal coefficient theorems covered by our methods we find, besides all the classic examples, several exotic examples arising from the KK-theory of C*-algebras and also Neeman’s Brown–Adams representability theorem for compactly generated categories
Localisation and colocalisation of KK-theory at sets of primes
Given a set of prime numbers S, we localise equivariant bivariant Kasparov
theory at S and compare this localisation with Kasparov theory by an exact
sequence. More precisely, we define the localisation at S to be KK^G(A,B)
tensored with the ring of S-integers Z[S^-1]. We study the properties of the
resulting variants of Kasparov theory.Comment: 16 page
Recommended from our members
Restriction to finite-index subgroups as étale extensions in topology, KK–theory and geometry
For equivariant stable homotopy theory, equivariant KK–theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry
