271 research outputs found

    Synthesis of a novel polyester building block from pentoses by tin-containing silicates

    Get PDF
    C5-Sugars form a new bio-monomer (trans-2,5-dihydroxy-3-pentenoic acid methyl ester), which can undergo enzymatic copolymerization with E6-HH to form multifunctional polymers.</p

    Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer

    Get PDF
    Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.This article is freely available via Open Access. Click on the Publisher URL to access the full-text via the publisher's site

    A European project on incidence, treatment, and outcome of sarcoma

    Get PDF
    Abstract BACKGROUND: Sarcomas are rare tumors (1-2% of all cancers) of mesenchymal origin that may develop in soft tissues and viscera. Since the International Classification of Disease (ICD) attributes visceral sarcomas (VS) to the organ of origin, the incidence of sarcoma is grossly underestimated. The rarity of the disease and the variety of histological types (more than 70) or locations account for the difficulty in acquiring sufficient personal experience. In view of the above the European Commission funded the project called Connective Tissues Cancers Network (CONTICANET), to improve the prognosis of sarcoma patients by increasing the level of standardization of diagnostic and therapeutic procedures through a multicentre collaboration. METHODS/DESIGN: Two protocols of epidemiological researches are here presented. The first investigation aims to build the population-based incidence of sarcoma in a two-year period, using the new 2002 WHO classification and the "second opinion" given by an expert regional pathologist on the initial diagnosis by a local pathologist. A three to five year survival rate will also be determined. Pathology reports and clinical records will be the sources of information.The second study aims to compare the effects on survival or relapse-free period - allowing for histological subtypes, clinical stage, primary site, age and gender - when the disease was treated or not according to the clinical practice guidelines (CPGs). DISCUSSION: Within CONTICANET, each group was asked to design a particular study on a specific objective, the partners of the network being free to accept or not the proposed protocol. The first protocol was accepted by the other researchers, therefore the incidence of sarcoma will be assessed in three European regions, Rhone-Alpes and Aquitaine (France) and Veneto (Italy), where the geographic distribution of sarcoma will be compared after taking into account age and gender. The conformity of the clinical practice with the recommended guidelines will be investigated in a French (Rhone Alps) and Italian (Veneto) region since the CPGs were similar in both areas

    The present and future of serum diagnostic tests for testicular germ cell tumours.

    Get PDF
    Testicular germ cell tumours (GCTs) are the most common malignancy occurring in young adult men and the incidence of these tumours is increasing. Current research priorities in this field include improving overall survival for patients classified as being 'poor-risk' and reducing late effects of treatment for patients classified as 'good-risk'. Testicular GCTs are broadly classified into seminomas and nonseminomatous GCTs (NSGCTs). The conventional serum protein tumour markers α-fetoprotein (AFP), human chorionic gonadotrophin (hCG) and lactate dehydrogenase (LDH) show some utility in the management of testicular malignant GCT. However, AFP and hCG display limited sensitivity and specificity, being indicative of yolk sac tumour (AFP) and choriocarcinoma or syncytiotrophoblast (hCG) subtypes. Furthermore, LDH is a very nonspecific biomarker. Consequently, seminomas and NSGCTs comprising a pure embryonal carcinoma subtype are generally negative for these conventional markers. As a result, novel universal biomarkers for testicular malignant GCTs are required. MicroRNAs are short, non-protein-coding RNAs that show much general promise as biomarkers. MicroRNAs from two 'clusters', miR-371-373 and miR-302-367, are overexpressed in all malignant GCTs, regardless of age (adult or paediatric), site (gonadal or extragonadal) and subtype (seminomas, yolk sac tumours or embryonal carcinomas). A panel of four circulating microRNAs from these two clusters (miR-371a-3p, miR-372-3p, miR-373-3p and miR-367-3p) is highly sensitive and specific for the diagnosis of malignant GCT, including seminoma and embryonal carcinoma. In the future, circulating microRNAs might be useful in diagnosis, disease monitoring and prognostication of malignant testicular GCTs, which might also reduce reliance on serial CT scanning. For translation into clinical practice, important practical considerations now need addressing.The authors would like to acknowledge grant funding from CwCUK/GOSHCC (M.J.M. N.C. grant W1058), SPARKS (M.J.M. N.C. grant 11CAM01), CRUK (N.C. grant A13080) MRC (M.J.M. grant MC_EX_G0800464) and National Health Service funding to the Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre for Cancer (R.A.H.). The authors also thank the Max Williamson Fund, the Josh Carrick Foundation and The Perse Preparatory School, Cambridge for support.This is the author accepted manuscript. The final version is available fromNature Publishing Group via https://doi.org/10.1038/nrurol.2016.17

    Differential expression of HSPA1 and HSPA2 proteins in human tissues; tissue microarray-based immunohistochemical study

    Get PDF
    In the present study we determined the expression pattern of HSPA1 and HSPA2 proteins in various normal human tissues by tissue-microarray based immunohistochemical analysis. Both proteins belong to the HSPA (HSP70) family of heat shock proteins. The HSPA2 is encoded by the gene originally defined as testis-specific, while HSPA1 is encoded by the stress-inducible genes (HSPA1A and HSPA1B). Our study revealed that both proteins are expressed only in some tissues from the 24 ones examined. HSPA2 was detected in adrenal gland, bronchus, cerebellum, cerebrum, colon, esophagus, kidney, skin, small intestine, stomach and testis, but not in adipose tissue, bladder, breast, cardiac muscle, diaphragm, liver, lung, lymph node, pancreas, prostate, skeletal muscle, spleen, thyroid. Expression of HSPA1 was detected in adrenal gland, bladder, breast, bronchus, cardiac muscle, esophagus, kidney, prostate, skin, but not in other tissues examined. Moreover, HSPA2 and HSPA1 proteins were found to be expressed in a cell-type-specific manner. The most pronounced cell-type expression pattern was found for HSPA2 protein. In the case of stratified squamous epithelia of the skin and esophagus, as well as in ciliated pseudostratified columnar epithelium lining respiratory tract, the HSPA2 positive cells were located in the basal layer. In the colon, small intestine and bronchus epithelia HSPA2 was detected in goblet cells. In adrenal gland cortex HSPA2 expression was limited to cells of zona reticularis. The presented results clearly show that certain human tissues constitutively express varying levels of HSPA1 and HSPA2 proteins in a highly differentiated way. Thus, our study can help designing experimental models suitable for cell- and tissue-type-specific functional differences between HSPA2 and HSPA1 proteins in human tissues
    • …
    corecore