2,681 research outputs found

    Retrieving fin-de-siècle women poets: the transformative myths, fragments and voices of Webster, Blind and Levy

    Get PDF
    The critical recuperation of late nineteenth-century women poets, most still waiting in the margins of the literary canon, has owed significantly to the renovated interest and study of the poetical works of Augusta Webster, Mathilde Blind and Amy Levy (1860-90) by the postmodern reader. One of the reasons for this ‘salvage’ may be that they represent and embody the profound and extraordinary changes encompassing the British fin-de-siècle, in which the transition from the Victorians to the Moderns implied the transformation or reconfiguration of certain myths or (hi)stories and the critical re-use or ‘recycling’ of major literary forms. If, for Webster and Blind, involvement in radical politics (namely, feminism and socialism) certainly implied a stance as outsiders, Blind and Levy were even more set apart by their foreignness, with Levy’s different religion and sexuality increasing the distance even further. With recourse to close reading and cultural critique, this paper will analyse how these three women poets re-use fragments (‘verbal ruins’) of national and international history, as well as classic myth, in order to question and transform the images and representations of man and woman in their respective connections with the world. It will demonstrate that while Webster’s poetry (Dramatic Studies of 1866 and Portraits of 1870) is firmly grounded on social demands and the exploration and dramatization of the nature of female experience, Blind’s epic and dramatic verse (The Ascent of Man of 1889 and Dramas in Miniature of 1891) creates new myths of human destiny, reclaiming the Poet’s role as the singer of the age’s scientific deeds, and Levy’s lyrics (Xantippe of 1881 and A Minor Poet of 1884) signal the New Woman poet’s role as victim of the pressures of emancipation. With the support of critics as Isobel Armstrong, Helen Groth and Angela Leighton, the paper will furthermore discuss the way in which these poets explore the selves that women inherit and create and the languages that re-define them, often through the expansive, public forms of dramatic and narrative verse; through these hybrid and fragmentary forms, Webster, Blind and Levy literally give voice to unspeakable feelings and situations, in which the anomalous and marginal are made central.info:eu-repo/semantics/acceptedVersio

    The stability of the O(N) invariant fixed point in three dimensions

    Full text link
    We study the stability of the O(N) fixed point in three dimensions under perturbations of the cubic type. We address this problem in the three cases N=2,3,4N=2,3,4 by using finite size scaling techniques and high precision Monte Carlo simulations. It is well know that there is a critical value 2<Nc<42<N_c<4 below which the O(N) fixed point is stable and above which the cubic fixed point becomes the stable one. While we cannot exclude that Nc<3N_c<3, as recently claimed by Kleinert and collaborators, our analysis strongly suggests that NcN_c coincides with 3.Comment: latex file of 18 pages plus three ps figure

    Microscopic Black Hole Pairs in Highly-Excited States

    Get PDF
    We consider the quantum mechanics of a system consisting of two identical, Planck-size Schwarzschild black holes revolving around their common center of mass. We find that even in a very highly-excited state such a system has very sharp, discrete energy eigenstates, and the system performs very rapid transitions from a one stationary state to another. For instance, when the system is in the 100th excited state, the life times of the energy eigenstates are of the order of 103010^{-30} s, and the energies of gravitons released in transitions between nearby states are of the order of 102210^{22} eV.Comment: 22 pages, 3 figures, uses RevTe

    Gravitating defects of codimension-two

    Get PDF
    Thin gravitating defects with conical singularities in higher codimensions and with generalized Israel matching conditions are known to be inconsistent for generic energy-momentum. A way to remove this inconsistency is proposed and is realized for an axially symmetric gravitating codimension-two defect in six dimensional Einstein gravity. By varying with respect to the brane embedding fields, alternative matching conditions are derived, which are generalizations of the Nambu-Goto equations of motion of the defect, consistent with bulk gravity. For a maximally symmetric defect the standard picture is recovered. The four-dimensional perfect fluid cosmology coincides with conventional FRW in the case of radiation, but for dust it has rho^{4/3} instead of rho. A four-dimensional black hole solution is presented having the Schwarzschild form with a short-distance correction r^{-2}.Comment: Minor changes, to appear in Classical and Quantum Gravit

    Critical Exponents of the Three Dimensional Random Field Ising Model

    Full text link
    The phase transition of the three--dimensional random field Ising model with a discrete (±h\pm h) field distribution is investigated by extensive Monte Carlo simulations. Values of the critical exponents for the correlation length, specific heat, susceptibility, disconnected susceptibility and magnetization are determined simultaneously via finite size scaling. While the exponents for the magnetization and disconnected susceptibility are consistent with a first order transition, the specific heat appears to saturate indicating no latent heat. Sample to sample fluctuations of the susceptibilty are consistent with the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in Postscrip

    Cognition-Enhancing Drugs: Can We Say No?

    Get PDF
    Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs

    Biot-Savart-like law in electrostatics

    Get PDF
    The Biot-Savart law is a well-known and powerful theoretical tool used to calculate magnetic fields due to currents in magnetostatics. We extend the range of applicability and the formal structure of the Biot-Savart law to electrostatics by deriving a Biot-Savart-like law suitable for calculating electric fields. We show that, under certain circumstances, the traditional Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem. We find an integral expression for the electric field due to an arbitrarily shaped, planar region kept at a fixed electric potential, in an otherwise grounded plane. As a by-product we present a very simple formula to compute the field produced in the plane defined by such a region. We illustrate the usefulness of our approach by calculating the electric field produced by planar regions of a few nontrivial shapes.Comment: 14 pages, 6 figures, RevTex, accepted for publication in the European Journal of Physic

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    Four-loop beta function and mass anomalous dimension in Dimensional Reduction

    Full text link
    Within the framework of QCD we compute renormalization constants for the strong coupling and the quark masses to four-loop order. We apply the DR-bar scheme and put special emphasis on the additional couplings which have to be taken into account. This concerns the epsilon-scalar--quark Yukawa coupling as well as the vertex containing four epsilon-scalars. For a supersymmetric Yang Mills theory, we find, in contrast to a previous claim, that the evanescent Yukawa coupling equals the strong coupling constant through three loops as required by supersymmetry.Comment: 15 pages, fixed typo in Eq. (18

    Lagrangian and Hamiltonian Formalism on a Quantum Plane

    Full text link
    We examine the problem of defining Lagrangian and Hamiltonian mechanics for a particle moving on a quantum plane Qq,pQ_{q,p}. For Lagrangian mechanics, we first define a tangent quantum plane TQq,pTQ_{q,p} spanned by noncommuting particle coordinates and velocities. Using techniques similar to those of Wess and Zumino, we construct two different differential calculi on TQq,pTQ_{q,p}. These two differential calculi can in principle give rise to two different particle dynamics, starting from a single Lagrangian. For Hamiltonian mechanics, we define a phase space TQq,pT^*Q_{q,p} spanned by noncommuting particle coordinates and momenta. The commutation relations for the momenta can be determined only after knowing their functional dependence on coordinates and velocities. Thus these commutation relations, as well as the differential calculus on TQq,pT^*Q_{q,p}, depend on the initial choice of Lagrangian. We obtain the deformed Hamilton's equations of motion and the deformed Poisson brackets, and their definitions also depend on our initial choice of Lagrangian. We illustrate these ideas for two sample Lagrangians. The first system we examine corresponds to that of a nonrelativistic particle in a scalar potential. The other Lagrangian we consider is first order in time derivative
    corecore