2,681 research outputs found
Retrieving fin-de-siècle women poets: the transformative myths, fragments and voices of Webster, Blind and Levy
The critical recuperation of late nineteenth-century women poets, most still waiting in the margins of the literary canon, has owed significantly to the renovated interest and study of the poetical works of Augusta Webster, Mathilde Blind and Amy Levy (1860-90) by the postmodern reader. One of the reasons for this ‘salvage’ may be that they represent and embody the profound and extraordinary changes encompassing the British fin-de-siècle, in which the transition from the Victorians to the Moderns implied the transformation or reconfiguration of certain myths or (hi)stories and the critical re-use or ‘recycling’ of major literary forms. If, for Webster and Blind, involvement in radical politics (namely, feminism and socialism) certainly implied a stance as outsiders, Blind and Levy were even more set apart by their foreignness, with Levy’s different religion and sexuality increasing the distance even further. With recourse to close reading and cultural critique, this paper will analyse how these three women poets re-use fragments (‘verbal ruins’) of national and international history, as well as classic myth, in order to question and transform the images and representations of man and woman in their respective connections with the world. It will demonstrate that while Webster’s poetry (Dramatic Studies of 1866 and Portraits of 1870) is firmly grounded on social demands and the exploration and dramatization of the nature of female experience, Blind’s epic and dramatic verse (The Ascent of Man of 1889 and Dramas in Miniature of 1891) creates new myths of human destiny, reclaiming the Poet’s role as the singer of the age’s scientific deeds, and Levy’s lyrics (Xantippe of 1881 and A Minor Poet of 1884) signal the New Woman poet’s role as victim of the pressures of emancipation. With the support of critics as Isobel Armstrong, Helen Groth and Angela Leighton, the paper will furthermore discuss the way in which these poets explore the selves that women inherit and create and the languages that re-define them, often through the expansive, public forms of dramatic and narrative verse; through these hybrid and fragmentary forms, Webster, Blind and Levy literally give voice to unspeakable feelings and situations, in which the anomalous and marginal are made central.info:eu-repo/semantics/acceptedVersio
The stability of the O(N) invariant fixed point in three dimensions
We study the stability of the O(N) fixed point in three dimensions under
perturbations of the cubic type. We address this problem in the three cases
by using finite size scaling techniques and high precision Monte
Carlo simulations. It is well know that there is a critical value
below which the O(N) fixed point is stable and above which the cubic fixed
point becomes the stable one. While we cannot exclude that , as recently
claimed by Kleinert and collaborators, our analysis strongly suggests that
coincides with 3.Comment: latex file of 18 pages plus three ps figure
Microscopic Black Hole Pairs in Highly-Excited States
We consider the quantum mechanics of a system consisting of two identical,
Planck-size Schwarzschild black holes revolving around their common center of
mass. We find that even in a very highly-excited state such a system has very
sharp, discrete energy eigenstates, and the system performs very rapid
transitions from a one stationary state to another. For instance, when the
system is in the 100th excited state, the life times of the energy eigenstates
are of the order of s, and the energies of gravitons released in
transitions between nearby states are of the order of eV.Comment: 22 pages, 3 figures, uses RevTe
Gravitating defects of codimension-two
Thin gravitating defects with conical singularities in higher codimensions
and with generalized Israel matching conditions are known to be inconsistent
for generic energy-momentum. A way to remove this inconsistency is proposed and
is realized for an axially symmetric gravitating codimension-two defect in six
dimensional Einstein gravity. By varying with respect to the brane embedding
fields, alternative matching conditions are derived, which are generalizations
of the Nambu-Goto equations of motion of the defect, consistent with bulk
gravity. For a maximally symmetric defect the standard picture is recovered.
The four-dimensional perfect fluid cosmology coincides with conventional FRW in
the case of radiation, but for dust it has rho^{4/3} instead of rho. A
four-dimensional black hole solution is presented having the Schwarzschild form
with a short-distance correction r^{-2}.Comment: Minor changes, to appear in Classical and Quantum Gravit
Critical Exponents of the Three Dimensional Random Field Ising Model
The phase transition of the three--dimensional random field Ising model with
a discrete () field distribution is investigated by extensive Monte
Carlo simulations. Values of the critical exponents for the correlation length,
specific heat, susceptibility, disconnected susceptibility and magnetization
are determined simultaneously via finite size scaling. While the exponents for
the magnetization and disconnected susceptibility are consistent with a first
order transition, the specific heat appears to saturate indicating no latent
heat. Sample to sample fluctuations of the susceptibilty are consistent with
the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in
Postscrip
Cognition-Enhancing Drugs: Can We Say No?
Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs
Biot-Savart-like law in electrostatics
The Biot-Savart law is a well-known and powerful theoretical tool used to
calculate magnetic fields due to currents in magnetostatics. We extend the
range of applicability and the formal structure of the Biot-Savart law to
electrostatics by deriving a Biot-Savart-like law suitable for calculating
electric fields. We show that, under certain circumstances, the traditional
Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem.
We find an integral expression for the electric field due to an arbitrarily
shaped, planar region kept at a fixed electric potential, in an otherwise
grounded plane. As a by-product we present a very simple formula to compute the
field produced in the plane defined by such a region. We illustrate the
usefulness of our approach by calculating the electric field produced by planar
regions of a few nontrivial shapes.Comment: 14 pages, 6 figures, RevTex, accepted for publication in the European
Journal of Physic
Visibility diagrams and experimental stripe structure in the quantum Hall effect
We analyze various properties of the visibility diagrams that can be used in
the context of modular symmetries and confront them to some recent experimental
developments in the Quantum Hall Effect. We show that a suitable physical
interpretation of the visibility diagrams which permits one to describe
successfully the observed architecture of the Quantum Hall states gives rise
naturally to a stripe structure reproducing some of the experimental features
that have been observed in the study of the quantum fluctuations of the Hall
conductance. Furthermore, we exhibit new properties of the visibility diagrams
stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil
Four-loop beta function and mass anomalous dimension in Dimensional Reduction
Within the framework of QCD we compute renormalization constants for the
strong coupling and the quark masses to four-loop order. We apply the DR-bar
scheme and put special emphasis on the additional couplings which have to be
taken into account. This concerns the epsilon-scalar--quark Yukawa coupling as
well as the vertex containing four epsilon-scalars. For a supersymmetric Yang
Mills theory, we find, in contrast to a previous claim, that the evanescent
Yukawa coupling equals the strong coupling constant through three loops as
required by supersymmetry.Comment: 15 pages, fixed typo in Eq. (18
Lagrangian and Hamiltonian Formalism on a Quantum Plane
We examine the problem of defining Lagrangian and Hamiltonian mechanics for a
particle moving on a quantum plane . For Lagrangian mechanics, we
first define a tangent quantum plane spanned by noncommuting
particle coordinates and velocities. Using techniques similar to those of Wess
and Zumino, we construct two different differential calculi on .
These two differential calculi can in principle give rise to two different
particle dynamics, starting from a single Lagrangian. For Hamiltonian
mechanics, we define a phase space spanned by noncommuting
particle coordinates and momenta. The commutation relations for the momenta can
be determined only after knowing their functional dependence on coordinates and
velocities.
Thus these commutation relations, as well as the differential calculus on
, depend on the initial choice of Lagrangian. We obtain the
deformed Hamilton's equations of motion and the deformed Poisson brackets, and
their definitions also depend on our initial choice of Lagrangian. We
illustrate these ideas for two sample Lagrangians. The first system we examine
corresponds to that of a nonrelativistic particle in a scalar potential. The
other Lagrangian we consider is first order in time derivative
- …
