3,949 research outputs found

    Alien Registration- Cote, Joseph I. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/29212/thumbnail.jp

    Structure of the SMC - Stellar component distribution from 2MASS data

    Full text link
    The spatial distribution of the SMC stellar component is investigated from 2MASS data. The morphology of the different age populations is presented. The center of the distribution is calculated and compared with previous estimations. The rotation of the stellar content and possible consequence of dark matter presence are discussed. The different stellar populations are identified through a CMD diagram of the 2MASS data. Isopleth contour maps are produced in every case, to reveal the spatial distribution. The derived density profiles are discussed. The older stellar population follows an exponential profile at projected diameters of about 5 kpc (~5 deg) for the major axis and ~4 kpc for the minor axis, centred at RA: 0h:51min, Dec: -73deg 7' (J2000.0). The centre coordinates are found the same for all the different age population maps and are in good accordance with the kinematical centre of the SMC. However they are found considerably different from the coordinates of the centre of the gas distribution. The fact that the older population found on an exponential disk, gives evidence that the stellar content is rotating, with a possible consequence of dark matter presence. The strong interactions between the MCs and the MilkyWay might explain the difference in the distributions of the stellar and gas components. The lack in the observed velocity element, that implies absence of rotation, and contradicts with the consequences of exponential profile of the stellar component, may also be a result of the gravitational interactions.Comment: 7 Pages, 6 figures, accepted for publication in A&

    Obscure Overt Gastrointestinal Bleeding Due To Isolated Small Bowel Angiomatosis

    Get PDF
    Isolated small bowel angiomatosis is a rare entity with a distinctive endoscopic appearance. A multidisciplinary approach is often required to diagnose and treat these complex lesions. We present 2 cases of isolated small bowel angiomatosis, and illustrate the endoscopic findings that may guide similar diagnoses

    Structure and Stability of Two-Dimensional Complexes of C_20 Fullerenes

    Full text link
    Two-dimensional complexes of C_20 fullerenes connected to each other by covalent bonds have been studied. Several isomers with different types of intercluster bonds have been revealed. The lifetimes of the (C_20)_MxM systems with M = 2 and 3 have been directly calculated at T = 1800 - 3300 K making use of molecular dynamics. It has been shown that these complexes lose their periodic cluster structure due to either coalescence of two fullerenes C_20 or decay of C_20 fullerenes. The activation energies of these processes exceed 2 eV.Comment: 17 pages, 5 figure

    Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1

    Full text link
    We consider a bi-layer electronic system at a total Landau level filling factor nu =1, and focus on the transition from the regime of weak inter-layer coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall ferromagnet''). Making the assumption that in the transition region the system is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly coupled state, we show that the transition is accompanied by a strong increase in longitudinal Coulomb drag, that reaches a maximum of approximately h/2e2h/2e^{2}. In that regime the longitudinal drag is increased with decreasing temperature.Comment: four pages, one included figur

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    A Magnetically Torqued Disk Model for Be Stars

    Full text link
    Despite extensive study, the mechanisms by which Be star disks acquire high densities and angular momentum while displaying variability on many time scales are still far from clear. In this paper, we discuss how magnetic torquing may help explain disk formation with the observed quasi-Keplerian (as opposed to expanding) velocity structure and their variability. We focus on the effects of the rapid rotation of Be stars, considering the regime where centrifugal forces provide the dominant radial support of the disk material. Using a kinematic description of the angular velocity, vphi(r), in the disk and a parametric model of an aligned field with a strength B(r) we develop analytic expressions for the disk properties that allow us to estimate the stellar surface field strength necessary to create such a disk for a range of stars on the main-sequence. The model explains why disks are most common for main-sequence stars at about spectral class B2 V. The earlier type stars with very fast and high density winds would require unacceptably strong surface fields (> 10^3 Gauss) to form torqued disks, while the late B stars (with their low mass loss rates) tend to form disks that produce only small fluxes in the dominant Be diagnostics. For stars at B2 V the average surface field required is about 300 Gauss. The predicted disks provide an intrinsic polarization and a flux at Halpha comparable to observations. We also discuss whether the effect on field containment of the time dependent accumulation of matter in the flux tubes/disk can help explain some of the observed variability of Be star disks.Comment: ApJ, in press. 46 pages, 12 figure
    corecore