49 research outputs found

    Dipole moments and conformations of certain arsenic-containing heterocycles

    Get PDF
    An axial orientation of aryl and aryloxy substituents at the arsenic atom in 1,3,2-dioxaarsenanes was established by the method of dipole moments. © 1976 Plenum Publishing Corporation

    Dipole moments and molar kerr constants of certain 2-chloro-1,3,2-dioxaarsolanes

    Get PDF
    1. An axial orientation of the As-Cl bond in 2-chloro-1,3,2-dioxaarsolanes was established by the method of dipole moments. 2. On the basis of the Kerr constants we determined the geometrical configuration of the substituents in 4-methyl- and meso-4,5-dimethyl-2-chloro-1,3,2-dioxaarsolanes. 3. For the dioxaarsolanes studied, substantial deviations from an additive scheme of the polarizabilities are observed. © 1975 Plenum Publishing Corporation

    Conformation of gem-diphenyl group in six-membered cyclic ethers of acids of sulfur, selenium, and arsenic

    Get PDF
    1. The sulfate, selenite, chloroarsenite, and bromoarsenite of 2,2-diphenyl-1,3-propanediol have been synthesized. 2. In the molecules of cyclic esters based on 2,2-diphenyl-l,3-propanediol, in the dissolved state, equivalent rotation of the phenyl groups relative to the ring symmetry plane is realized. © 1980 Plenum Publishing Corporation

    An experimental study of the effects of SNPs in the TATA boxes of the <i>GRIN1, ASCL3</i> and <i>NOS1</i> genes on interactions with the TATA-binding protein

    Get PDF
    The GRIN1, ASCL3, and NOS1 genes are associated with various phenotypes of neuropsychiatric disorders. For instance, these genes contribute to the development of schizophrenia, Alzheimer’s and Parkinson’s diseases, and epilepsy. These genes are also associated with various cancers. For example, ASCL3 is overexpressed in breast cancer, and NOS1, in ovarian cancer cell lines. Based on our findings and literature data, we had previously obtained results suggesting that the single-nucleotide polymorphisms (SNPs) that disrupt erythropoiesis are highly likely to be associated with cognitive and neuropsychiatric disorders in humans. In the present work, using SNP_TATA_Z-tester, we investigated the influence of unannotated SNPs in the TATA boxes of the promoters of the GRIN1, ASCL3, and NOS1 genes (which are involved in neuropsychiatric disorders and cancers) on the interaction of the TATA boxes with the TATA-binding protein (TBP). Double-stranded oligodeoxyribonucleotides identical to the TATA-containing promoter regions of the GRIN1, ASCL3, and NOS1 genes (reference and minor alleles) and recombinant human TBP were employed to study in vitro (by an electrophoretic mobility shift assay) kinetic characteristics of the formation of TBP–TATA complexes and their affinity. It was found, for example, that allele A of rs1402667001 in the GRIN1 promoter increases TBP–TATA affinity 1.4-fold, whereas allele C in the TATA box of the ASCL3 promoter decreases the affinity 1.4-fold. The lifetime of the complexes in both cases decreased by ~20 % due to changes in the rates of association and dissociation of the complexes (ka and kd, respectively). Our experimental results are consistent with the literature showing GRIN1 underexpression in schizophrenic disorders as well as an increased risk of cervical, bladder, and kidney cancers and lymphoma during ASCL3 underexpression. The effect of allele A of the –27G&gt;A SNP (rs1195040887) in the NOS1 promoter is suggestive of an increased risk of ischemic damage to the brain in carriers. A comparison of experimental TBP–TATA affinity values (KD) of wild-type and minor alleles with predicted ones showed that the data correlate well (linear correlation coefficient r = 0.94, p &lt; 0.01)

    Conformations of cyclic bromoarsenites and the electrical parameters of arsenic bonds

    Get PDF
    1. It has been shown that 2-bromo-l,3,2-dioxaarsenanes exist in chair conformation with axially oriented As-Br bonds. 2. Polarity and polarizability parameters have been found for the As-O and As-Br bonds in 2-bromo-l,3,2-dioxaarsenanes. 3. The so-called α-effect is stronger in the O2AsBr group than in the O2AsCl group. © 1977 Plenum Publishing Corporation

    Stereochemistry of 2-substituted 5,6-benzo-1,3,2-dioxarsepines

    Get PDF
    1. 2-Chloro- and 2-bromo-5,6-benzo-1,3,2-dioxarsepines have the chair conformation with axial arrangement of the exocyclic bond at the arsenic atom. 2. In the case of 2-phenyl-, 2-(p-bromophenyl)-, and 2-(p-nitrophenyl)-5,6-benzo-1,3,2-dioxarsepines an equilibrium exists in solution between the chair-a and twist conformers, the ratio of which is close to unity.13C NMR spectra of "frozen conformers" at 143°K have been obtained for the first time for such a series of compounds. © 1985 Plenum Publishing Corporation

    Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans

    Get PDF
    Individual behavioral differences are due to an interaction of the genotype and the environment. Phenotypic manifestation of aggressive behavior depends on the coordinated expression of gene ensembles. Nonetheless, the identification of these genes and of combinations of their mutual influence on expression remains a difficult task. Using animal models of aggressive behavior (gray rats that were selected for a reaction to humans; tame and aggressive rat strains), we evaluated the expression of 10 genes potentially associated with aggressiveness according to the literature: Cacna1b, Cacna2d3, Drd2, Egr1, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1. To identify the genes most important for the manifestation of aggressiveness, we analyzed the expression of these genes in two generations of rats: 88th and 90th. Assessment of gene expression levels was carried out by real-time PCR in the hypothalamus of tame and aggressive rats. This analysis confirmed that 4 out of the 10 genes differ in expression levels between aggressive rats and tame rats in both generations. Specifically, it was shown that the expression of the Cacna1b, Drd2, Egr1, and Gad2 genes does not differ between the two generations (88th vs 90th) within each strain, but significantly differs between the strains: in the tame rats of both generations, the expression levels of these genes are significantly lower as compared to those in the aggressive rats. Therefore, these genes hold promise for further studies on behavioral characteristics. Thus, we confirmed polygenic causes of phenotypic manifestation of aggressive reactions

    Flanking monomer repeats define lower context complexity of sites containing single nucleotide polymorphisms in the human genome

    Get PDF
    We have investigated a mutation frequency within the human genome for the set of known single nucleotide polymorphisms (SNPs) from the “1000 genomes” project. We have developed and applied novel statistical computational methods to analyze genetic text based on its complexity. A complexity profiling in a sliding window is applied to the sites containing single nucleotide polymorphisms within the human genome. A local decrease in text complexity level in SNP-containing sites has been shown. Analysis of the complexity profiles for SNPcontaining sites shows that flanking monomer repeats define a lower context complexity of sites containing SNPs within the human genome. An effect of local decrease in text complexity in SNP-containing sites is confirmed by analysis of polymorphisms in the rat and mouse genomes. We have found context differences between coding and regulatory sequences. These differences reflect a complexity of SNP-containing loci. The changes in point mutation frequency were shown previously for microsatellite containing sequences. Using enhanced mathematical tools and larger data sets this work shows enrichment of polytracks and simple sequence repeats in local genome surroundings of SNP containing sites. We have found high-frequency oligonucleotides within genomic regions containing SNPs. Such oligonucleotides are related to nucleotide polytracks. The presence of poly-A tracks might be associated with an increased probability of double helix DNA breaks around mutable loci and following fixation of nucleotide changes. The complexity estimates were computed using a previously developed program tool. This tool allows for both (i) complexity estimation of phased samples, and (ii) rapid and effective identification of the frequency spectrum of oligonucleotides with fixed lengths, and a comparison of oligonucleotide frequencies in different sample

    Candidate SNP markers of social dominance, which may affect the affinity of the TATAbinding protein for human gene promoters

    Get PDF
    The following heuristic hypothesis has been proposed: if an excess of a protein in several animal organs was experimentally identified as physiological marker of increased aggressiveness and if a polymorphism (SNP) can cause superexpression of the human gene homologous of the animal gene encoding this protein, then this polymorphism can be a candidate SNP marker of social dominance, whereas a deficient expression corresponds to subordinate and vice versa. Within this hypothesis, we analyzed 21 human genes –ADORA2A, BDNF, CC2D1A, CC2D1B, ESR2, FEV, FOS, GH1, GLTSCR2, GRIN1, HTR1B, HTR1A, HTR2A, HTR2C, LGI4, LEP, MAOA, SLC17A7, SLC6A3, SNCA, TH – which represent the functions of proteins known as physiological markers of aggressive behavior in animals: hormones and their receptors, biosynthetic enzymes and receptors of neurotransmitters, transcription and neurotrophic factors. These proteins may play an important role in determining hierarchical relationships in social animals. Using our previously developed Web-service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl), we analyzed 381 SNPs within the region of [–70; –20] relative to the start protein-coding transcripts, which is the region of the all known TATA-binding protein (TBP) binding sites. We took them from the database dbSNP, v.147 As a result, we found 45 and 47 candidate SNP markers of dominance and submission, respectively (e. g., rs373600960 and rs747572588). Within the framework of the proposed heuristic hypotheses and database dbSNP v.147, we found statistically significant (α &lt; 10-5) evidence of the effects of natural selection against the deficient expression of genes, which can affect the predisposition to dominate, as well as in favor of both subordination and domination behavior as a norm of reaction of aggressiveness (difference not significant: α &gt; 0.35). The proposed hypothesis, the candidate SNP markers predicted and the observed regularities of effects of natural selection for the human genome are discussed in comparison with published data: whether they can have any relation to social dominance in human. It was concluded that these results require experimental verification

    Computational problems of analysis of short next generation sequencing reads

    Get PDF
    Short read next generation sequencing (NGS) has significant impacts on modern genomics, genetics, cell biology and medicine, especially on meta-genomics, comparative genomics, polymorphism detection, mutation screening, transcriptome profiling, methylation profiling, chromatin remodelling and many more applications. However, NGS are prone for errors which complicate scientific conclusions. NGS technologies consist of shearing DNA molecules into collection of numerous small fragments, called a ‘library’, and their further extensive parallel sequencing. These sequenced overlapping fragments are called ‘reads’, they are assembled into contiguous strings. The contiguous sequences are in turn assembled into genomes for further analysis. Computational sequencing problems are those arising from numerical processing of sequenced samples. The numerical processing involves procedures such as: quality-scoring, mapping/assembling, and surprisingly, error-correction of a data. This paper is reviewing post-processing errors and computational methods to discern them. It also includes sequencing dictionary. We present here quality control of raw data, errors arising at the steps of alignment of sequencing reads to a reference genome and assembly. Finally this work presents identification of mutations (“Variant calling”) in sequencing data and its quality control
    corecore