156 research outputs found

    Continuous variable quantum cryptography

    Get PDF
    We propose a quantum cryptographic scheme in which small phase and amplitude modulations of CW light beams carry the key information. The presence of EPR type correlations provides the quantum protection.Comment: 8 pages, 3 figure

    Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    Full text link
    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular the prospects for measuring the thermal correction are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev

    A preliminary analysis of in-depth accident data for powered two-wheelers and bicycles in Europe

    Get PDF
    Despite progress from scientific and technological advancements, road safety remains a major issue worldwide. Road accident impacts such as fatalities, injuries and property damage consist considerable costs borne not only by involved people but society as well. This study aims to present preliminary findings of in-depth accident analysis for two-wheelers (bicycles and powered two wheelers – PTWs) across six countries in Europe. Data regarding the conditions underlying accident occurrence are presented, including time and date, weather, vehicle and road conditions and rider-related parameters such as age, intoxication and use of protective equipment. In addition, a Two Step Cluster Analysis is implemented in order to explore any possible classification of the analysed cases. It appears that two clusters are formed: the first includes more favourable conditions (“no wind, no drugs, good lighting”) while the second consists of less favourable conditions for road safety (“windy, lighting, unknown DUI condition”). This hints at a meaningful separation of the examination of two-wheeler accidents when the influence of outside factors is considerable. The inclusion of different but representative areas across Europe offers robustness and transferability to the data and respective results

    Casimir Force on a Micrometer Sphere in a Dip: Proposal of an Experiment

    Full text link
    The attractive Casimir force acting on a micrometer-sphere suspended in a spherical dip, close to the wall, is discussed. This setup is in principle directly accessible to experiment. The sphere and the substrate are assumed to be made of the same perfectly conducting material.Comment: 11 pages, 1 figure; to appear in J. Phys. A: Math. Ge

    High-fidelity transmission of entanglement over a high-loss freespace channel

    Full text link
    Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols require the distribution of entangled states between distant parties. Here we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite quantum communication scenario. We confirm that the received two-photon states are still highly entangled by violating the CHSH inequality by more than 5 standard deviations. From a fundamental point of view, our results show that the photons are virtually not subject to decoherence during their 0.5 ms long flight through air, which is encouraging for future world-wide quantum communication scenarios.Comment: 5 pages, 3 figures, replaced paper with published version, added journal referenc

    Quantum key distribution in terms of the Greenberger-Horne-Zeilinger state: multi-key generation

    Full text link
    In this paper, we develop a quantum key distribution protocol based on the Greenberger-Horne-Zeilinger states (GHZs). The particles are exchanged among the users in blocks through two steps. In this protocol, for three-particle GHZs three keys can be simultaneously generated. The advantage of this is that the users can select the most suitable key for communication. The protocol can be generalized to NN users to provide NN keys. The protocol has two levels for checking the eavesdroppers. Moreover, we discuss the security of the protocol against different attacks.Comment: 10 Page, no figures. Comments are most welcom

    A conditional-phase switch at the single-photon level

    Full text link
    We present an experimental realization of a two-photon conditional-phase switch, related to the ``cc-ϕ\phi '' gate of quantum computation. This gate relies on quantum interference between photon pairs, generating entanglement between two optical modes through the process of spontaneous parametric down-conversion (SPDC). The interference effect serves to enhance the effective nonlinearity by many orders of magnitude, so it is significant at the quantum (single-photon) level. By adjusting the relative optical phase between the classical pump for SPDC and the pair of input modes, one can impress a large phase shift on one beam which depends on the presence or absence of a single photon in a control mode.Comment: 8 pages, 4 figure

    Magnetic properties of X-Pt (X=Fe,Co,Ni) alloy systems

    Full text link
    We have studied the electronic and magnetic properties of Fe-Pt, Co-Pt and Ni-Pt alloy systems in ordered and disordered phases. The influence of various exchange-correlation functionals on values of equilibrium lattice parameters and magnetic moments in ordered Fe-Pt, Co-Pt and Ni-Pt alloys have been studied using linearized muffin-tin orbital method. The electronic structure calculations for the disordered alloys have been carried out using augmented space recursion technique in the framework of tight binding linearized muffin-tin orbital method. The effect of short range order has also been studied in the disordered phase of these systems. The results show good agreements with available experimental values.Comment: 21 pages, 4 eps figures, accepted for publication in Journal of Physics Condensed Matte
    corecore