76 research outputs found

    Spatio-temporal distribution of nucleation events during crystal growth

    Full text link
    We consider irreversible second-layer nucleation that occurs when two adatoms on a terrace meet. We solve the problem analytically in one dimension for zero and infinite step-edge barriers, and numerically for any value of the barriers in one and two dimensions. For large barriers, the spatial distribution of nucleation events strongly differs from ρ2\rho^2, where ρ\rho is the stationary adatom density in the presence of a constant flux. The probability Q(t)Q(t) that nucleation occurs at time tt after the deposition of the second adatom, decays for short time as a power law [Q(t)t1/2Q(t)\sim t^{-1/2}] in d=1d=1 and logarithmically [Q(t)1/ln(t/t0)Q(t)\sim 1/\ln(t/t_0)] in d=2d=2; for long time it decays exponentially. Theories of the nucleation rate ω\omega based on the assumption that it is proportional to ρ2\rho^2 are shown to overestimate ω\omega by a factor proportional to the number of times an adatom diffusing on the terrace visits an already visited lattice site.Comment: 4 pages, 3 figures; accepted for publication on PR

    The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach

    Full text link
    The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing particles. This leads to an overestimate of the correct nucleation rate by a factor N, which has a direct physical meaning: in average, a visited lattice site is visited N times by a diffusing adatom. The dependence of N on the size of the terrace and on the strength of step-edge barriers is derived from well known results for random walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for the same physical reason. In the following paper we develop an exact treatment of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.

    Island nucleation in the presence of step edge barriers: Theory and applications

    Full text link
    We develop a theory of nucleation on top of two-dimensional islands bordered by steps with an additional energy barrier ΔES\Delta E_S for descending atoms. The theory is based on the concept of the residence time of an adatom on the island,and yields an expression for the nucleation rate which becomes exact in the limit of strong step edge barriers. This expression differs qualitatively and quantitatively from that obtained using the conventional rate equation approach to nucleation [J. Tersoff et al., Phys. Rev. Lett.72, 266 (1994)]. We argue that rate equation theory fails because nucleation is dominated by the rare instances when two atoms are present on the island simultaneously. The theory is applied to two distinct problems: The onset of second layer nucleation in submonolayer growth, and the distribution of the sizes of top terraces of multilayer mounds under conditions of strong step edge barriers. Application to homoepitaxial growth on Pt(111) yields the estimate ΔES0.33\Delta E_S \geq 0.33 eV for the additional energy barrier at CO-decorated steps.Comment: 13 pages, 3 figure

    Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Get PDF
    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src
    corecore