research

Spatio-temporal distribution of nucleation events during crystal growth

Abstract

We consider irreversible second-layer nucleation that occurs when two adatoms on a terrace meet. We solve the problem analytically in one dimension for zero and infinite step-edge barriers, and numerically for any value of the barriers in one and two dimensions. For large barriers, the spatial distribution of nucleation events strongly differs from ρ2\rho^2, where ρ\rho is the stationary adatom density in the presence of a constant flux. The probability Q(t)Q(t) that nucleation occurs at time tt after the deposition of the second adatom, decays for short time as a power law [Q(t)t1/2Q(t)\sim t^{-1/2}] in d=1d=1 and logarithmically [Q(t)1/ln(t/t0)Q(t)\sim 1/\ln(t/t_0)] in d=2d=2; for long time it decays exponentially. Theories of the nucleation rate ω\omega based on the assumption that it is proportional to ρ2\rho^2 are shown to overestimate ω\omega by a factor proportional to the number of times an adatom diffusing on the terrace visits an already visited lattice site.Comment: 4 pages, 3 figures; accepted for publication on PR

    Similar works