821 research outputs found

    Precision luminosity measurement at ILC

    Full text link
    In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.Comment: Talk presented on behalf of the FCAL Collaboration at the International Workshop on Future Linear Colliders (LCWS13) Tokyo, Japan, 11-15 November 201

    Measurement of Trilinear Gauge Couplings at a gamma-gamma and e-gamma Collider

    Full text link
    The processes gamma gamma -> WW and e gamma -> nu W are sensitive to triple gauge boson interactions. Both reactions have been simulated for hadronically decaying W-bosons and the sensitivity to anomalous couplings has been estimated.Comment: Talk presented at LCWS2002, August 2002, Jeju Island, Kore

    Luminosity measurement at ILC

    Full text link
    In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background from physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.Comment: Accepted for publication in JINST (submission JINST_016P_0413

    Snowmass White Paper: Prospects of CP-violation measurements with the Higgs boson at future experiments

    Full text link
    The search for CP violation in interactions of the Higgs boson with either fermions or bosons provides attractive reference measurements in the Particle Physics Community Planning Exercise (a.k.a. "Snowmass"). Benchmark measurements of CP violation provide a limited and well-defined set of parameters that could be tested at the proton, electron-positron, photon, and muon colliders, and compared to those achieved through study of virtual effects in electric dipole moment measurements. We review the current status of these CP-sensitive studies and provide projections to future measurements.Comment: Snowmass White Paper. 23 pages, 6 figure

    Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up

    Get PDF
    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table

    Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    Get PDF
    Detector-plane prototypes of the very forward calorimetry of a future detector at an e+e- collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from referee

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Events with an isolated lepton and missing transverse momentum and measurement of W production at HERA

    Get PDF
    A search for events containing an isolated electron or muon and missing trans verse momentum produced in e(+/-)p collisions is performed with the H1 and ZEUS detectors at HERA. The data were taken in the period 1994-2007 and correspond to an integrated luminosity of 0.98 fb(-1). The observed event yields are in good overall agreement with the Standard Model prediction, which is dominated by single W production. In the e(+)p data, at large hadronic transverse momentum P-T(X) > 25GeV, a total of 23 events are observed compared to a prediction of 14.0 +/- 1.9. The total single W boson production cross section is measured as 1.06 +/- 0.16 (stat.) +/- 0.07 (sys.) pb, in agreement with an Standard Model (SM) expectation of 1.26 +/- 0.19 pb
    corecore