1,953 research outputs found

    Self-consistent Skyrme QRPA for use in axially-symmetric nuclei of arbitrary mass

    Full text link
    We describe a new implementation of the quasiparticle random phase approximation (QRPA) in axially-symmetric deformed nuclei with Skyrme and volume-pairing energy-density functionals. After using a variety of tests to demonstrate the accuracy of the code in ^{24,26}Mg and ^{16}O, we report the first fully self-consistent application of the Skyrme QRPA to a heavy deformed nucleus, calculating strength distributions for several K^pi in ^{172}Yb. We present energy-weighted sums, properties of gamma-vibrational and low-energy K^pi=0^+ states, and the complete isovector E1 strength function. The QRPA calculation reproduces the properties of the low-lying 2^+ states as well or better than it typically does in spherical nuclei.Comment: 5 pages, 6 figure

    Relationships between nonmesonic-weak-decays in different hypernuclei

    Full text link
    Using as a tool the s-wave approximation (sWA), this work demonstrates that the nonmesonic weak decay transition rates Γn\Gamma_{n} and Γp\Gamma_{p} can be expressed in all hypernuclei up to Λ29^{29}_\Lambda Si (and very likely in heavier ones too) in the same way as in the s-shell hypernuclei, i.e. as a linear combination of only three elementary transition rates. This finding leads to the analytic prediction that, independently of the transition mechanism, all hypernuclei that are on the stability line (N = Z), i.e. Λ5^5_\Lambda He, Λ7^7_\Lambda Li, Λ9^9_\Lambda Be, Λ11^{11}_\LambdaB, Λ13^{13}_\Lambda C, Λ17^{17}_\Lambda O, Λ29^{29}_\Lambda Si, etc should roughly have the same ratio Γn/Γp\Gamma_{n}/\Gamma_{p}, the magnitude of which rapidly increases when one approaches the neutron drip-line (N >> Z), and opposite happens when one goes toward the proton drip-line (N << Z).Comment: 7 pages, 1 figur

    Electron correlations in two-dimensional small quantum dots

    Full text link
    We consider circular and elliptic quantum dots with parabolic external confinement, containing 0 - 22 electrons and with values of r_s in the range 0 < r_s < 3. We perform restricted and unrestricted Hartree-Fock calculations, and further take into account electron correlations using second-order perturbation theory. We demonstrate that in many cases correlations qualitatively change the spin structure of the ground state from that obtained under Hartree-Fock and spin-density-functional calculations. In some cases the correlation effects destroy Hund's rule. We also demonstrate that the correlations destroy static spin-density waves observed in Hartree-Fock and spin-density-functional calculations.Comment: 11 pages, 9 figures. This replacement contains new content. Results have been recalculated for dots with zero effective thickness (true 2D). For 6 electrons, results have been compared with configuration interaction results from the literatur

    REGULAR SUPPRESSION OF P,T-VIOLATING NUCLEAR MATRIX ELEMENTS

    Get PDF
    In heavy nuclei there is a parametrical suppression,   ∼A−1/3  \;\sim A^{-1/3}\;, of T-odd, P-odd matrix elements as compared to T-even, P-odd ones.Comment: 3 page

    Relationships between a roller and a dynamic pressure distribution in circular hydraulic jumps

    Full text link
    We investigated numerically the relation between a roller and the pressure distribution to clarify the dynamics of the roller in circular hydraulic jumps. We found that a roller which characterizes a type II jump is associated with two high pressure regions after the jump, while a type I jump (without the roller) is associated with only one high pressure region. Our numerical results show that building up an appropriate pressure field is essential for a roller.Comment: 10 pages, 7 PS files. To appear in PR

    Hindrance of ^{16}O+^{208}Pb fusion at extreme sub-barrier energies

    Full text link
    We analyze the fusion data for 16^{16}O+208^{208}Pb using coupled-channels calculations. We include couplings to the low-lying surface excitations of the projectile and target and study the effect of the (16^{16}O,17^{17}O) one-neutron pickup. The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC). We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential and a weak, short-ranged imaginary potential.Comment: text and 8 fifure

    Feasibility of loophole-free nonlocality tests with a single photon

    Full text link
    Recently much interest has been directed towards designing setups that achieve realistic loss thresholds for decisive tests of local realism, in particular in the optical regime. We analyse the feasibility of such Bell tests based on a W-state shared between multiple parties, which can be realised for example by a single photon shared between spatial modes. We develop a general error model to obtain thresholds on the efficiencies required to violate local realism, and also consider two concrete optical measurement schemes.Comment: 8 pages, 5 figure

    Ergodicity of the Δ3\Delta_3 statistic and purity of neutron resonance data

    Full text link
    The Δ3(L)\Delta_3(L) statistic characterizes the fluctuations of the number of levels as a function of the length of the spectral interval. It is studied as a possible tool to indicate the regular or chaotic nature of underlying dynamics, detect missing levels and the mixing of sequences of levels of different symmetry, particularly in neutron resonance data. The relation between the ensemble average and the average over different fragments of a given realization of spectra is considered. A useful expression for the variance of Δ3(L)\Delta_3(L) which accounts for finite sample size is discussed. An analysis of neutron resonance data presents the results consistent with a maximum likelihood method applied to the level spacing distribution.Comment: 24 pages, 19 figures, 1 tabl

    Geometric factors in the Bohr--Rosenfeld analysis of the measurability of the electromagnetic field

    Full text link
    The Geometric factors in the field commutators and spring constants of the measurement devices in the famous analysis of the measurability of the electromagnetic field by Bohr and Rosenfeld are calculated using a Fourier--Bessel method for the evaluation of folding integrals, which enables one to obtain the general geometric factors as a Fourier--Bessel series. When the space region over which the factors are defined are spherical, the Fourier--Bessel series terms are given by elementary functions, and using the standard Fourier-integral method of calculating folding integrals, the geometric factors can be evaluated in terms of manageable closed-form expressions.Comment: 21 pages, REVTe

    Change of shell structure and magnetic moments of odd-N deformed nuclei towards neutron drip line

    Full text link
    Examples of the change of neutron shell-structure in both weakly-bound and resonant neutron one-particle levels in nuclei towards the neutron drip line are exhibited. It is shown that the shell-structure change due to the weak binding may lead to the deformation of those nuclei with the neutron numbers N≈N \approx 8, 20, 28 and 40, which are known to be magic numbers in stable nuclei. Nuclei in the "island of inversion" are most easily and in a simple manner understood in terms of deformation. As an example of spectroscopic properties other than single-particle energies, magnetic moments of some weakly-bound possibly deformed odd-N nuclei with neutron numbers close to those traditional magic numbers are given, which are calculated using the wave function of the last odd particle in deformed Woods-Saxon potentials.Comment: 21 pages, 6 figure
    • …
    corecore