994 research outputs found
Resonant and crossover phenomena in a multiband superconductor tuning the chemical potential near a band edge
Resonances in the superconducting properties, in a regime of crossover from
BCS to mixed Bose-Fermi superconductivity, are investigated in a two-band
superconductor where the chemical potential is tuned near the band edge of the
second mini-band generated by quantum confinement effects. The shape resonances
at T=0 in the superconducting gaps (belonging to the class of Feshbach-like
resonances) is manifested by interference effects in the superconducting gap at
the first large Fermi surface when the chemical potential is in the proximity
of the band edge of the second mini-band. The case of a superlattice of quantum
wells is considered and the amplification of the superperconducting gaps at the
3D-2D Fermi surface topological transition is clearly shown. The results are
found to be in good agreement with available experimental data on a
superlattice of honeycomb boron layers intercalated by Al and Mg spacer layers.Comment: 13 pages, 9 image
Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers
The multigap superconductivity modulated by quantum confinement effects in a
superlattice of quantum wells is presented. Our theoretical BCS approach
captures the low-energy physics of a shape resonance in the superconducting
gaps when the chemical potential is tuned near a Lifshitz transition. We focus
on the case of weak Cooper-pairing coupling channels and strong pair exchange
interaction driven by repulsive Coulomb interaction that allows to use the BCS
theory in the weak-coupling regime neglecting retardation effects like in
quantum condensates of ultracold gases. The calculated matrix element effects
in the pairing interaction are shown to yield a complex physics near the
particular quantum critical points due to Lifshitz transitions in multigap
superconductivity. Strong deviations of the ratio from the
standard BCS value as a function of the position of the chemical potential
relative to the Lifshitz transition point measured by the Lifshitz parameter
are found. The response of the condensate phase to the tuning of the Lifshitz
parameter is compared with the response of ultracold gases in the BCS-BEC
crossover tuned by an external magnetic field. The results provide the
description of the condensates in this regime where matrix element effects play
a key role.Comment: 12 pages, 6 figure
Emergence of weight-topology correlations in complex scale-free networks
Different weighted scale-free networks show weights-topology correlations
indicated by the non linear scaling of the node strength with node
connectivity. In this paper we show that networks with and without
weight-topology correlations can emerge from the same simple growth dynamics of
the node connectivities and of the link weights. A weighted fitness network is
introduced in which both nodes and links are assigned intrinsic fitness. This
model can show a local dependence of the weight-topology correlations and can
undergo a phase transition to a state in which the network is dominated by few
links which acquire a finite fraction of the total weight of the network.Comment: (4 pages,3 figures
A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors
In the framework of a two-band model, we study the phase separation regime of
different kinds of strongly correlated charge carriers as a function of the
energy splitting between the two sets of bands. The narrow (wide) band
simulates the more localized (more delocalized) type of charge carriers. By
assuming that the internal chemical pressure on the CuO layer due to
interlayer mismatch controls the energy splitting between the two sets of
states, the theoretical predictions are able to reproduce the regime of phase
separation at doping higher than 1/8 in the experimental pressure-doping-
phase diagram of cuprates at large microstrain as it appears in overoxygenated
LaCuO.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
From Majorana theory of atomic autoionization to Feshbach resonances in high temperature superconductors
The Ettore Majorana paper - Theory of incomplete P triplets- published in
1931, focuses on the role of selection rules for the non-radiative decay of two
electron excitations in atomic spectra, involving the configuration interaction
between discrete and continuum channels. This work is a key step for
understanding the 1935 work of Ugo Fano on the asymmetric lineshape of two
electron excitations and the 1958 Herman Feshbach paper on the shape resonances
in nuclear scattering arising from configuration interaction between many
different scattering channels. The Feshbach resonances are today of high
scientific interest in many different fields and in particular for ultracold
gases and high Tc superconductivity.Comment: 13 pages, 7 figures. Journal of Superconductivity and Novel Magnetism
to be publishe
Isotope effect on the E2g phonon and mesoscopic phase separation near the electronic topological transition in Mg1-xAlxB2
We report the boron isotope effect on the E2g phonon mode by micro-Raman
spectroscopy on the ternary Mg1-xAlxB2 system, synthesized with pure isotopes
10B and 11B. The isotope coefficient on the phonon frequency is near 0.5 in the
full range decreasing near x = 0. The intraband electron-phonon (e-ph)
coupling, for the electrons in the sigma band, has been extracted from the E2g
line-width and frequency softening. Tuning the Fermi energy near the electronic
topological transition (ETT), where the sigma Fermi surface changes from 2D to
3D topology the E2g mode, shows the known Kohn anomaly on the 2D side of the
ETT and a splitting of the E2g phonon frequency into a hard and soft component
from x = 0 to x = 0.28. The results suggest a minor role of the intraband
phonon mediated pairing in the control of the high critical temperature in
Mg1-xAlxB2. The common physical features of diborides with the novel multigap
FeAs-based superconductors and cuprates is discussed.Comment: 19 pages, 6 figure
Cliques and duplication-divergence network growth
A population of complete subgraphs or cliques in a network evolving via
duplication-divergence is considered. We find that a number of cliques of each
size scales linearly with the size of the network. We also derive a clique
population distribution that is in perfect agreement with both the simulation
results and the clique statistic of the protein-protein binding network of the
fruit fly. In addition, we show that such features as fat-tail degree
distribution, various rates of average degree growth and non-averaging,
revealed recently for only the particular case of a completely asymmetric
divergence, are present in a general case of arbitrary divergence.Comment: 7 pages, 6 figure
The entropy of randomized network ensembles
Randomized network ensembles are the null models of real networks and are
extensivelly used to compare a real system to a null hypothesis. In this paper
we study network ensembles with the same degree distribution, the same
degree-correlations or the same community structure of any given real network.
We characterize these randomized network ensembles by their entropy, i.e. the
normalized logarithm of the total number of networks which are part of these
ensembles.
We estimate the entropy of randomized ensembles starting from a large set of
real directed and undirected networks. We propose entropy as an indicator to
assess the role of each structural feature in a given real network.We observe
that the ensembles with fixed scale-free degree distribution have smaller
entropy than the ensembles with homogeneous degree distribution indicating a
higher level of order in scale-free networks.Comment: (6 pages,1 figure,2 tables
Enhancing the robustness of a multiplex network leads to multiple discontinuous percolation transitions
Determining design principles that boost robustness of interdependent
networks is a fundamental question of engineering, economics, and biology. It
is known that maximizing the degree correlation between replicas of the same
node leads to optimal robustness. Here we show that increased robustness might
also come at the expense of introducing multiple phase transitions. These
results reveal yet another possible source of fragility of multiplex networks
that has to be taken into the account during network optimisation and design
- …