1,261 research outputs found

    Simulating nonequilibrium quantum fields with stochastic quantization techniques

    Full text link
    We present lattice simulations of nonequilibrium quantum fields in Minkowskian space-time. Starting from a non-thermal initial state, the real-time quantum ensemble in 3+1 dimensions is constructed by a stochastic process in an additional (5th) ``Langevin-time''. For the example of a self-interacting scalar field we show how to resolve apparent unstable Langevin dynamics, and compare our quantum results with those obtained in classical field theory. Such a direct simulation method is crucial for our understanding of collision experiments of heavy nuclei or other nonequilibrium phenomena in strongly coupled quantum many-body systems.Comment: 4 pages, 4 figures, PRL version, minor change

    Critical phenomena from the two-particle irreducible 1/N expansion

    Full text link
    The 1/N expansion of the two-particle irreducible (2PI) effective action is employed to compute universal properties at the second-order phase transition of an O(N)-symmetric N-vector model directly in three dimensions. At next-to-leading order the approach cures the spurious small-N divergence of the standard (1PI) 1/N expansion for a computation of the critical anomalous dimension eta(N), and leads to improved estimates already for moderate values of N.Comment: 18 pages, 3 figure

    Asymptotically free four-fermion interactions and electroweak symmetry breaking

    Full text link
    We investigate the fermions of the standard model without a Higgs scalar. Instead, we consider a non-local four-quark interaction in the tensor channel which is characterized by a single dimensionless coupling ff. Quantization leads to a consistent perturbative expansion for small ff. The running of ff is asymptotically free and therefore induces a non-perturbative scale Λch\Lambda_{ch}, in analogy to the strong interactions. We argue that spontaneous electroweak symmetry breaking is triggered at a scale where ff grows large and find the top quark mass of the order of Λch\Lambda_{ch}. We also present a first estimate of the effective Yukawa coupling of a composite Higgs scalar to the top quark, as well as the associated mass ratio between the top quark and the W boson.Comment: 24 page

    A unified picture of ferromagnetism, quasi-long range order and criticality in random field models

    Full text link
    By applying the recently developed nonperturbative functional renormalization group (FRG) approach, we study the interplay between ferromagnetism, quasi-long range order (QLRO) and criticality in the dd-dimensional random field O(N) model in the whole (NN, dd) diagram. Even though the "dimensional reduction" property breaks down below some critical line, the topology of the phase diagram is found similar to that of the pure O(N) model, with however no equivalent of the Kosterlitz-Thouless transition. In addition, we obtain that QLRO, namely a topologically ordered "Bragg glass" phase, is absent in the 3--dimensional random field XY model. The nonperturbative results are supplemented by a perturbative FRG analysis to two loops around d=4d=4.Comment: 4 pages, 4 figure

    Lattice simulations of real-time quantum fields

    Get PDF
    We investigate lattice simulations of scalar and nonabelian gauge fields in Minkowski space-time. For SU(2) gauge-theory expectation values of link variables in 3+1 dimensions are constructed by a stochastic process in an additional (5th) ``Langevin-time''. A sufficiently small Langevin step size and the use of a tilted real-time contour leads to converging results in general. All fixed point solutions are shown to fulfil the infinite hierarchy of Dyson-Schwinger identities, however, they are not unique without further constraints. For the nonabelian gauge theory the thermal equilibrium fixed point is only approached at intermediate Langevin-times. It becomes more stable if the complex time path is deformed towards Euclidean space-time. We analyze this behavior further using the real-time evolution of a quantum anharmonic oscillator, which is alternatively solved by diagonalizing its Hamiltonian. Without further optimization stochastic quantization can give accurate descriptions if the real-time extend of the lattice is small on the scale of the inverse temperature.Comment: 36 pages, 15 figures, Late

    Linking the Quark Meson Model with QCD at High Temperature

    Full text link
    We model the transition of a system of quarks and gluons at high energies to a system of quarks and mesons at low energies in a consistent renormalization group approach. Flow equations interpolate between the physics of the high-temperature degrees of freedom and the low-temperature dynamics at a scale of 1 GeV. We also discuss the dependence of the equation of state on baryon density and compare our results with recent lattice gauge simulations.Comment: 11 pages, 4 figures additional discussion of the second order phase transitio

    Bosonic effective action for interacting fermions

    Full text link
    We compare different versions of a bosonic description for systems of interacting fermions, with particular emphasis on the free energy functional. The bosonic effective action makes the issue of symmetries particularly transparent and we present for the Hubbard model an exact mapping between repulsive and attractive interactions. A systematic expansion for the bosonic effective action starts with a solution to the lowest order Schwinger-Dyson or gap equation. We propose a two particle irreducible formulation of an exact functional renormalization group equation for computations beyond leading order. On this basis we suggest a renormalized gap equation. This approach is compared with functional renormalization in a partially bosonized setting.Comment: new sections on exact mapping between attractive and repulsive Hubbard model and relation between two-particle-irreducible formalism, 32 pages,1 figure,LaTe

    Numerical investigation of friction in inflaton equations of motion

    Full text link
    The equation of motion for the expectation value of a scalar quantum field does not have the local form that is commonly assumed in studies of inflationary cosmology. We have recently argued that the true, temporally non-local equation of motion does not possess a time-derivative expansion and that the conversion of inflaton energy into particles is not, in principle, described by the friction term estimated from linear response theory. Here, we use numerical methods to investigate whether this obstacle to deriving a local equation of motion is purely formal, or of some quantitative importance. Using a simple scalar-field model, we find that, although the non-equilibrium evolution can exhibit significant damping, this damping is not well described by the local equation of motion obtained from linear response theory. It is possible that linear response theory does not apply to the situation we study only because thermalization turns out to be slow, but we argue that that the large discrepancies we observe indicate a failure of the local approximation at a more fundamental level.Comment: 13 pages, 7 figure

    Bottom-up isotropization in classical-statistical lattice gauge theory

    Full text link
    We compute nonequilibrium dynamics for classical-statistical SU(2) pure gauge theory on a lattice. We consider anisotropic initial conditions with high occupation numbers in the transverse plane on a characteristic scale ~ Q_s. This is used to investigate the very early stages of the thermalization process in the context of heavy-ion collisions. We find Weibel or "primary" instabilities with growth rates similar to those obtained from previous treatments employing anisotropic distributions of hard modes (particles) in the weak coupling limit. We observe "secondary" growth rates for higher-momentum modes reaching substantially larger values and we analyse them in terms of resummed loop diagrams beyond the hard-loop approximation. We find that a coarse grained pressure isotropizes "bottom-up" with a characteristic inverse rate of gamma^{-1} ~ 1 - 2 fm/c for coarse graining momentum scales of p < 1 GeV choosing an initial energy density for RHIC of epsilon = 30 GeV/fm^3. The nonequilibrium spatial Wilson loop is found to exhibit an area law and to become isotropic on a similar time scale.Comment: 22 pages, 12 figures. Phys. Rev. D version, appendix on insensitivity to volume and cutoff effects adde

    Functional renormalization for trion formation in ultracold fermion gases

    Full text link
    The energy spectrum for three species of identical fermionic atoms close to a Feshbach resonance is computed by use of a nonperturbative flow equation. Already a simple truncation shows that for large scattering length a|a| the lowest energy state is a "trion" (or trimer) bound state of three atoms. At the location of the resonance, for a|a|\to\infty, we find an infinite set of trimer bound states, with exponentially decreasing binding energy. This feature was pointed out by Efimov. It arises from limit cycle scaling, which also leads to a periodic dependence of the three body scattering coupling on lna\ln |a|. Extending our findings by continuity to nonzero density and temperature we find that a "trion phase" separates a BEC and a BCS phase, with interesting quantum phase transitions for T=0.Comment: 9 pages, 4 figures, minor changes, reference adde
    corecore