13 research outputs found

    DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography

    Full text link
    We present DeepTract, a deep-learning framework for estimating white matter fibers orientation and streamline tractography. We adopt a data-driven approach for fiber reconstruction from diffusion weighted images (DWI), which does not assume a specific diffusion model. We use a recurrent neural network for mapping sequences of DWI values into probabilistic fiber orientation distributions. Based on these estimations, our model facilitates both deterministic and probabilistic streamline tractography. We quantitatively evaluate our method using the Tractometer tool, demonstrating competitive performance with state-of-the art classical and machine learning based tractography algorithms. We further present qualitative results of bundle-specific probabilistic tractography obtained using our method. The code is publicly available at: https://github.com/itaybenou/DeepTract.git

    Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy

    No full text
    In inflammatory bowel disease (IBD), compromised restitution of the epithelial barrier contributes to disease severity. Owing to the complexity in the pathogenesis of IBD, a variety of factors have been implicated in its progress. In this study, we report a functional interaction between macroautophagy and Corticotropin Releasing Hormone (Crh) in the gut. For this purpose we used DSS colitis model on Crh ?/? or wild-type (wt) with pharmacological inhibition of autophagy. We uncovered sustained basal autophagy in the gut of Crh ?/? mice, which persisted over the course of DSS administration. Autophagy inhibition resulted in partial rescue of Crh ?/? mice, while it increased the expression of Crh in the wt gut. Similarly, Crh deficiency was associated with sustained activation of base line autophagy. In vitro models of amino acid deprivation- and LPS-induced autophagy confirmed the in vivo findings. Our results indicate a novel role for Crh in the intestinal epithelium that involves regulation of autophagy, while suggesting the complementary action of the two pathways. These data suggest the intriguing possibility that targeting Crh stimulation in the intestine may provide a novel therapeutic approach to support the integrity of the epithelial barrier and to protect from chronic colitis
    corecore