3 research outputs found
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed
matter physics counterpart of relativisticWeyl fermion [13] originally
introduced in high energy physics. The Weyl semimetal realized in the TaAs
class features multiple Fermi arcs arising from topological surface states [10,
11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced
negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20].
Recently it was proposed theoretically that a new type (type-II) of Weyl
fermion [21], which does not have counterpart in high energy physics due to the
breaking of Lorentz invariance, can emerge as topologically-protected touching
between electron and hole pockets. Here, we report direct spectroscopic
evidence of topological Fermi arcs in the predicted type-II Weyl semimetal
MoTe2 [22-24]. The topological surface states are confirmed by directly
observing the surface states using bulk-and surface-sensitive angle-resolved
photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI)
pattern between the two putative Fermi arcs in scanning tunneling microscopy
(STM). Our work establishes MoTe2 as the first experimental realization of
type-II Weyl semimetal, and opens up new opportunities for probing novel
phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic
evidence of the Fermi arcs from two complementary surface sensitive probes -
ARPES and STS. A comparison of the calculated band structure for T_d and 1T'
phase to identify the topological Fermi arcs in the T_d phase is also
included in the supplementary informatio