247 research outputs found

    Marginally stable circular orbits in stationary axisymmetric spacetimes

    Get PDF
    16 pages, 1 figure. Published in Phys. Rev. D 94, 024015 (2016)E. G. gratefully acknowledges support from Consejo Nacional de Ciencia y Tecnonología (CONACyT Scholarship No. 494039/218141). S. B. also thanks the London Mathematical Society for their support (Grace Chisholm Young Fellowship No. GCY 13-14 02)

    Enkephalon - technological platform to support the diagnosis of alzheimer’s disease through the analysis of resonance images using data mining techniques

    Get PDF
    Dementia can be considered as a decrease in the cognitive function of the person. The main diseases that appear are Alzheimer and vascular dementia. Today, 47 million people live with dementia around the world. The estimated total cost of dementia worldwide is US $ 818 billion, and it will become a trilliondollar disease by 2019 The vast majority of people with dementia not received a diagnosis, so they are unable to access care and treatment. In Colombia, two out of every five people presented a mental disorder at some point in their lives and 90% of these have not accessed a health service. Here it´s proposed a technological platform so early detection of Alzheimer. This tool complements and validates the diagnosis made by the health professional, based on the application of Machine Learning techniques for the analysis of a dataset, constructed from magnetic resonance imaging, neuropsychological test and the result of a radiological test. A comparative analysis of quality metrics was made, evaluating the performance of different classifier methods: Random subspace, Decorate, BFTree, LMT, Ordinal class classifier, ADTree and Random forest. This allowed us to identify the technique with the highest prediction rate, that was implemented in ENKEPHALON platform

    Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond

    Get PDF
    Epilepsy is a diverse brain disorder, and the pathophysiology of its various forms and comorbidities is largely unknown. A recent machine learning method enables us to estimate an individual’s “brain-age” from MRI; this brain-age prediction is expected as a novel individual biomarker of neuropsychiatric disorders. The aims of this study were to estimate the brain-age for various categories of epilepsy and to evaluate clinical discrimination by brain-age for (1) the effect of psychosis on temporal lobe epilepsy (TLE), (2) psychogenic nonepileptic seizures (PNESs) from MRI-negative epilepsies, and (3) progressive myoclonic epilepsy (PME) from juvenile myoclonic epilepsy (JME). In total, 1196 T1-weighted MRI scans from healthy controls (HCs) were used to build a brain-age prediction model with support vector regression. Using the model, we calculated the brain-predicted age difference (brain-PAD: predicted age—chronological age) of the HCs and 318 patients with epilepsy. We compared the brain-PAD values based on the research questions. As a result, all categories of patients except for extra-temporal lobe focal epilepsy showed a significant increase in brain-PAD. TLE with hippocampal sclerosis presented a significantly higher brain-PAD than several other categories. The mean brain-PAD in TLE with interictal psychosis was 10.9 years, which was significantly higher than TLE without psychosis (5.3 years). PNES showed a comparable mean brain-PAD (10.6 years) to that of epilepsy patients. PME had a higher brain-PAD than JME (22.0 vs. 9.3 years). In conclusion, neuroimaging-based brain-age prediction can provide novel insight into or clinical usefulness for the diverse symptoms of epileps

    Interpretation of Brain Morphology in Association to Alzheimer's Disease Dementia Classification Using Graph Convolutional Networks on Triangulated Meshes

    Full text link
    We propose a mesh-based technique to aid in the classification of Alzheimer's disease dementia (ADD) using mesh representations of the cortex and subcortical structures. Deep learning methods for classification tasks that utilize structural neuroimaging often require extensive learning parameters to optimize. Frequently, these approaches for automated medical diagnosis also lack visual interpretability for areas in the brain involved in making a diagnosis. This work: (a) analyzes brain shape using surface information of the cortex and subcortical structures, (b) proposes a residual learning framework for state-of-the-art graph convolutional networks which offer a significant reduction in learnable parameters, and (c) offers visual interpretability of the network via class-specific gradient information that localizes important regions of interest in our inputs. With our proposed method leveraging the use of cortical and subcortical surface information, we outperform other machine learning methods with a 96.35% testing accuracy for the ADD vs. healthy control problem. We confirm the validity of our model by observing its performance in a 25-trial Monte Carlo cross-validation. The generated visualization maps in our study show correspondences with current knowledge regarding the structural localization of pathological changes in the brain associated to dementia of the Alzheimer's type.Comment: Accepted for the Shape in Medical Imaging (ShapeMI) workshop at MICCAI International Conference 202

    Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase

    Get PDF
    Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxida- tive enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of tri- methoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimetho- prim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97 % of Escherichia coli and Staphylococcus epidermidis suspen- sions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.The authors Idalina Gonçalves and Cláudia Botelho would like to acknowledge the NOVO project (FP7-HEALTH- 2011.2.3.1- 5) for funding. Loïc Hilliou acknowledges the financial support by FCT – Foundation for Science and Technology, Portugal (501100001871), through Grant PEst-C/CTM/LA0025/2013 - Strategic Project - LA 25 - 2013–2014, and by Programa Operacional Regional do Norte (ON.2) through the project BMatepro – Optimizing Materials and Processes^, with reference NORTE-07-0124-FEDER-000037 FEDER COMPETE

    A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data

    Full text link
    We introduce a wide and deep neural network for prediction of progression from patients with mild cognitive impairment to Alzheimer's disease. Information from anatomical shape and tabular clinical data (demographics, biomarkers) are fused in a single neural network. The network is invariant to shape transformations and avoids the need to identify point correspondences between shapes. To account for right censored time-to-event data, i.e., when it is only known that a patient did not develop Alzheimer's disease up to a particular time point, we employ a loss commonly used in survival analysis. Our network is trained end-to-end to combine information from a patient's hippocampus shape and clinical biomarkers. Our experiments on data from the Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model is able to learn a shape descriptor that augments clinical biomarkers and outperforms a deep neural network on shape alone and a linear model on common clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop, ECML-PKDD 201
    corecore