25 research outputs found

    Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation

    Get PDF
    Cisplatin is widely used for treating various solid tumors. However, this drug produces dose-limiting ototoxicity and nephrotoxicity, which significantly reduce the quality of life of cancer patients. While nephrotoxicity could be alleviated by diuresis, there is currently no approved treatment for hearing loss. Previous studies show that the ROS and inflammation are major contributors to cisplatin-induced hearing loss. In this study, we show that ROS trigger the inflammatory process in the cochlea by activating signal transducer and activator of transcription-1 (STAT1). Activation of STAT1 activation was dependent on ROS generation through NOX3 NADPH oxidase, knockdown of which by siRNA reduced STAT1 activation. Moreover, STAT1 siRNA protected against activation of p53, reduced apoptosis, reduced damage to OHCs and preserved hearing in rats. STAT1 siRNA attenuated the increase in inflammatory mediators, such as TNF-α, inhibition of which protected cells from cisplatin-mediated apoptosis. Finally, we showed that trans-tympanic administration of etanercept, a TNF-α antagonist, protected against OHC damage and cisplatin-induced hearing loss. These studies suggest that controlling inflammation by inhibition of STAT1-dependent pathways in the cochlea could serve as an effective approach to treat cisplatin ototoxicity and improve the overall quality of life for cancer patients

    Automatic isotope gas analysis of tritium labelled organic materials

    No full text

    Automatic isotope gas analysis of tritium labelled organic materials

    No full text

    Detailed comparison of expressed and native voltage-gated proton channel currents

    No full text
    Two years ago, genes coding for voltage-gated proton channels in humans, mice and Ciona intestinalis were discovered. Transfection of cDNA encoding the human HVCN1 (HV1) or mouse (mVSOP) ortholog of HVCN1 into mammalian cells results in currents that are extremely similar to native proton currents, with a subtle, but functionally important, difference. Expressed proton channels exhibit high H+ selectivity, voltage-dependent gating, strong temperature sensitivity, inhibition by Zn2+, and gating kinetics similar to native proton currents. Like native channels, expressed proton channels are regulated by pH, with the proton conductance–voltage (gH–V) relationship shifting toward more negative voltages when pHo is increased or pHi is decreased. However, in every (unstimulated) cell studied to date, endogenous proton channels open only positive to the Nernst potential for protons, EH. Consequently, only outward H+ currents exist in the steady state. In contrast, when the human or mouse proton channel genes are expressed in HEK-293 or COS-7 cells, sustained inward H+ currents can be elicited, especially with an inward proton gradient (pHo < pHi). Inward current is the result of a negative shift in the absolute voltage dependence of gating. The voltage dependence at any given pHo and pHi is shifted by about −30 mV compared with native H+ channels. Expressed HV1 voltage dependence was insensitive to interventions that promote phosphorylation or dephosphorylation of native phagocyte proton channels, suggesting distinct regulation of expressed channels. Finally, we present additional evidence that speaks against a number of possible mechanisms for the anomalous voltage dependence of expressed H+ channels
    corecore