24 research outputs found

    A touch of glue to complete bacteriophage assembly: the tail-to-head joining protein (THJP) family

    No full text
    Bacteriophage SPP1 is a nanomachine built to infect the bacterium Bacillus subtilis. The phage particle is composed of an icosahedric capsid, which contains the viral DNA, and a long non-contractile tail. Capsids and tails are produced in infected cells by two distinct morphogenetic pathways. Characterization of the suppressor-sensitive mutant SPP1sus82 showed that it produces DNA-filled capsids and tails but is unable to assemble complete virions. Its purified tails have a normal length but lack a narrow ring that tapers the tail end found at the tail-to-head interface. The mutant is defective in production of gp17. The gp17 ring is exposed in free tails competent for viral assembly but becomes shielded in the final virion structure. Recombinant gp17 is active in an in vitro assay to stick together capsids and tails present in extracts of SPP1sus82-infected cells, leading to formation of infectious particles. Gp17 thus plays a fundamental role in the tail-to-head joining reaction, the ultimate step of virus particle assembly. This is the conserved function of gp17 and its structurally related proteins like lambda gpU. This family of proteins can also provide fidelity to termination of the tail tube elongation reaction in a subset of phages including coliphage lambda

    Mol Micro

    No full text
    The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has ∼10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes
    corecore