15 research outputs found

    Anemos : development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms

    No full text
    International audienceThis paper presents the objectives and the research work carried out in the frame of the ANEMOS project on short-term wind power forecasting. The aim of the project is to develop accurate models that substantially outperform current state-of-the-art methods, for onshore and offshore wind power forecasting, exploiting both statistical and physical modeling approaches. The project focus on prediction horizons up to 48 hours ahead and investigates predictability of wind for higher horizons up to 7 days ahead useful i.e. for maintenance scheduling. Emphasis is given on the integration of highresolution meteorological forecasts. For the offshore case, marine meteorology is considered as well as information by satellite-radar images. An integrated software platform, ‘ANEMOS', is developed to host the various models. This system will be installed by several utilities for on-line operation at onshore and offshore wind farms for prediction at a local, regional and national scale. The applications include different terrain types and wind climates, on- and offshore cases, and interconnected or island grids. The on-line operation by the utilities will allow validation of the models and an analysis of the value of wind prediction for a competitive integration of wind energy in the developing liberalized electricity markets in the EU

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The neurocognitive functioning in bipolar disorder: a systematic review of data

    Full text link

    Comparison of inorganic and organic nitrogen supplementation of grape juice - Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast

    No full text
    Inorganic nitrogen salts, and to a growing extent organic nitrogen preparations, are widely used to ameliorate a nitrogen deficiency in wine fermentation, but the impact of nitrogen supplementation on perceived wine sensory profile is essentially unknown. Supplementation of a low nitrogen Chardonnay grape juice with either ammonium nitrogen or combined amino acid and ammonium nitrogen showed that the type of nitrogen and concentration in the range 160-480 mg N/l had a substantial impact on the formation of yeast volatile compounds and perceived wine aroma. Addition of amino acid and ammonium nitrogen increased both acetate and medium chain fatty acid esters to a greater extent and decreased higher alcohols to a lesser extent than ammonium nitrogen alone whereas ammonium nitrogen substantially increased ethyl acetate and acetic acid. Low nitrogen wines were rated relatively low in floral/fruity aroma descriptors, while moderate nitrogen wines showed a good balance between desirable and less desirable attributes, whereas high nitrogen produced either an acetic/solvent character or highest ratings for floral/fruity attributes, depending on nitrogen type. These results show that amount and type of nitrogen supplement can substantially modulate Chardonnay wine volatiles composition and perceived aroma. \ua9 2011 Elsevier Ltd. All rights reserved

    Quantification of Mesenchymal Stem Cell (MSC) Delivery to a Target Site Using In Vivo Confocal Microscopy

    Get PDF
    The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs) labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ) compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential.Sanofi Aventis (Firm
    corecore