3,806 research outputs found

    Entangled spin clusters: some special features

    Get PDF
    In this paper, we study three specific aspects of entanglement in small spin clusters. We first study the effect of inhomogeneous exchange coupling strength on the entanglement properties of the S=1/2 antiferromagnetic linear chain tetramer compound NaCuAsO_{4}. The entanglement gap temperature, T_{E}, is found to have a non-monotonic dependence on the value of α\alpha, the exchange coupling inhomogeneity parameter. We next determine the variation of T_{E} as a function of S for a spin dimer, a trimer and a tetrahedron. The temperature T_{E} is found to increase as a function of S, but the scaled entanglement gap temperature t_{E} goes to zero as S becomes large. Lastly, we study a spin-1 dimer compound to illustrate the quantum complementarity relation. We show that in the experimentally realizable parameter region, magnetization and entanglement plateaus appear simultaneously at low temperatures as a function of the magnetic field. Also, the sharp increase in one quantity as a function of the magnetic field is accompanied by a sharp decrease in the other so that the quantum complementarity relation is not violated.Comment: 17 pages, 6 figures. Accepted in Phys. Rev.

    Hawking radiation from dynamical horizons

    Full text link
    In completely local settings, we establish that a dynamically evolving black hole horizon can be assigned a Hawking temperature. Moreover, we calculate the Hawking flux and show that the radius of the horizon shrinks.Comment: 5 Page

    Robustness of d-Density Wave Order to Nonmagnetic Impurities

    Full text link
    Effect of finite density of nonmagnetic impurities on a coexisting phase of d-density wave (DDW) order and d-wave superconducting (DSC) order is studied using Bogoliubov-de Gennes (BdG) method. The spatial variation of the inhomogeneous DDW order due to impurities has a strong correlation with that of density, which is very different from that of DSC order. The length scale associated with DDW is found to be of the order of a lattice spacing. The nontrivial inhomogeneities are shown to make DDW order much more robust to the impurities, while DSC order becomes very sensitive to them. The effect of disorder on the density of states is also discussed.Comment: 4 pages, 3 PostScript figure
    • …
    corecore