22 research outputs found

    Anti-proliperative and Anti-metastatic Agents of Balinese Long Pepper (Piper retrofractum V) Extract in Breast Cancer

    Get PDF
    Breast cancer is malignancy that becomes significant health problem in the world. According to WHO data in 2018, there were 2.1 million cases of breast cancer with mortality rate reaching 627,000. Current breast cancer treatments are surgery, radiation therapy, hormonal therapy and chemotherapy. However, these treatments have side effects such as neuropathy, fatigue after undergoing chemotherapy, and alopecia. Natural ingredients are the choice to overcome these weaknesses, one of which is the utilization of piperine in Balinese long pepper (Piper retrofractum Vahl). Piperine can increase the bioavailability of many drugs by increasing absorption from the intestine, suppressing the metabolism of drugs in lung and liver tissue by inhibiting CYP3A4 and P84 glycoprotein P84. Piperine is easily absorbed in the intestine and excreted through urine and feces, causing minimal toxic effects. Piperine in Balinese long pepper is able to reduce breast cancer cell proliferation by 40%. Piperine can also inhibit epidermal growth factor (EGF) by inducing decreased expression of MMP-9 and MMP-13. Piperine will work through inhibition of NF-κB and PKCα phosphorylation and AP-1 activation by interfering extracellular signal-regulated kinase (ERK) signaling pathway (ERK) 1/2, p38 MAPK, and Akt which results in inhibition of migration and metastasis of breast cancer cells. &nbsp

    Exposure to particulate matter (PM2.5) and prevalence of diabetes mellitus in Indonesia

    Get PDF
    Background Recently emerging evidence suggests an association between particulate matter less than 2.5 µm in diameter (PM2.5) exposure and diabetes risk. However, evidence from Asia is limited. Here, we evaluated the association between PM2.5 exposure and the prevalence of diabetes mellitus in one of the most populated countries in Asia, Indonesia. Methods We used the 2013 Indonesia Basic Health Research, which surveyed households in 487 regencies/municipalities in all 33 provinces in Indonesia (n = 647,947). We assigned individual exposure to PM2.5 using QGIS software. Multilevel logistic regression with a random intercept based on village and cubic spline analysis were used to assess the association between PM2.5 exposure and the prevalence of diabetes mellitus. We also assessed the lower exposure at which PM2.5 has potential adverse effects. Results We included 647,947 subjects with a mean age of 41.9 years in our study. Exposure to PM2.5 levels was associated with a 10-unit increase in PM2.5 (fully adjusted odds ratio: 1.09; 95% confidence interval: 1.05–1.14). The findings were consistent for quartile increases in PM2.5 levels and the cubic spline function. Even when we restricted to those exposed to PM2.5 concentrations of less than 10.0 µg/m3 in accordance with the recommended guidelines for annual exposure to PM2.5 made by the World Health Organization, the association remained elevated, especially among subjects living in the urban areas. Hence, we were unable to establish a safe threshold for PM2.5 and the risk of diabetes. Conclusions Our findings suggest a positive association between PM2.5 exposure and prevalence of diabetes mellitus, which is possibly below the current recommended guidelines. Further studies are needed to ascertain the causal association of this finding

    Signal Diversity of Receptor for Advanced Glycation End Products

    Get PDF
    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE’s cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE’s cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE’s signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts

    Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility

    Get PDF
    Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis

    Histidine-Rich Glycoprotein Suppresses the S100A8/A9-Mediated Organotropic Metastasis of Melanoma Cells

    Get PDF
    The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis

    DNAX-activating protein 10 (DAP10) membrane adaptor associates with receptor for advanced glycation end products (RAGE) and modulates the RAGE-triggered signaling pathway in human keratinocytes.

    Get PDF
    The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes

    Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness

    Get PDF
    Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear. In this study, we found for the first time that an extracellular cytokine, S100A8/A9, accelerates breast cancer growth and metastasis upon binding to a cell surface receptor, melanoma cell adhesion molecule (MCAM). Our molecular analyses revealed an important role of ETS translocation variant 4 (ETV4), which is significantly activated in the region downstream of MCAM upon S100A8/A9 stimulation, in breast cancer progression in vitro as well as in vivo. The MCAM-mediated activation of ETV4 induced a mobile phenotype called epithelial-mesenchymal transition (EMT) in cells, since we found that ETV4 transcriptionally upregulates ZEB1, a strong EMT inducer, at a very high level. In contrast, downregulation of either MCAM or ETV4 repressed EMT, resulting in greatly weakened tumor growth and lung metastasis. Overall, our results revealed that ETV4 is a novel transcription factor regulated by the S100A8/A9-MCAM axis, which leads to EMT through ZEB1 and thereby to metastasis in breast cancer cells. Thus, therapeutic strategies based on our findings might improve patient outcomes
    corecore