12 research outputs found

    DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Get PDF
    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase

    Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime

    No full text
    Physiological and photobiochemical changes and growth in the heterotrophic strain Chlorella vulgaris g120 were studied during trophic conversion from heterotrophic to phototrophic growth regime. After the exposure of the Chlorella g120 culture to light, it revealed a significant activity of the electron transport (450–700 μmol e− m−2 s −1 as measured by chlorophyll fluorescence) and high PSII photochemical yield Fv/Fm between 0.7 and 0.8. Fast fluorescence induction kinetics showed that PSII electron acceptors in the plastoquinone pool remained partly oxidized, indicating no downregulation of PSII electron transport. The data further revealed that high photobiochemical activity is lost in futile (protective) processes of non-photochemical quenching and respiration which indicate that surplus energy is dissipated in these processes. Pigment analysis showed low chlorophyll content − 0.35–1.15% as compared with exclusively phototrophic strain Chlorella vulgaris R-117. Nevertheless, the carotenoid content in g120 was relatively high − 0.20–0.33% of dry weight which resulted in a considerably high ratio of carotenoid/chlorophyll − 0.31–0.44. This strain probably does not possess the fully competent photosynthetic apparatus and can only partially adapt to phototrophy. We show that the heterotrophically grown g120 strain can undergo metabolic shift from heterotrophic to phototrophic growth regime. It might be an interesting strain from biotechnological point of view as a source of carotenoids, especially lutein.Czech Academy of Sciences/[CNR-16-29]/CAS/República ChecaNational Council of Research of Italy/[CNR-16-29]/Cnr-Iia/RomaEuropean Commission/[727874]/EU/ünión EuropeaMinistry of Education, Youth and Sports/[Algatech Plus LO1416]/MSMT/República ChecaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR
    corecore