259 research outputs found

    Deep Coherence Learning: An Unsupervised Deep Beamformer for High Quality Single Plane Wave Imaging in Medical Ultrasound

    Full text link
    Plane wave imaging (PWI) in medical ultrasound is becoming an important reconstruction method with high frame rates and new clinical applications. Recently, single PWI based on deep learning (DL) has been studied to overcome lowered frame rates of traditional PWI with multiple PW transmissions. However, due to the lack of appropriate ground truth images, DL-based PWI still remains challenging for performance improvements. To address this issue, in this paper, we propose a new unsupervised learning approach, i.e., deep coherence learning (DCL)-based DL beamformer (DL-DCL), for high-quality single PWI. In DL-DCL, the DL network is trained to predict highly correlated signals with a unique loss function from a set of PW data, and the trained DL model encourages high-quality PWI from low-quality single PW data. In addition, the DL-DCL framework based on complex baseband signals enables a universal beamformer. To assess the performance of DL-DCL, simulation, phantom and in vivo studies were conducted with public datasets, and it was compared with traditional beamformers (i.e., DAS with 75-PWs and DMAS with 1-PW) and other DL-based methods (i.e., supervised learning approach with 1-PW and generative adversarial network (GAN) with 1-PW). From the experiments, the proposed DL-DCL showed comparable results with DMAS with 1-PW and DAS with 75-PWs in spatial resolution, and it outperformed all comparison methods in contrast resolution. These results demonstrated that the proposed unsupervised learning approach can address the inherent limitations of traditional PWIs based on DL, and it also showed great potential in clinical settings with minimal artifacts

    A degree reduction method for an efficient QUBO formulation for the graph coloring problem

    Full text link
    We introduce a new degree reduction method for homogeneous symmetric polynomials on binary variables that generalizes the conventional degree reduction methods on monomials introduced by Freedman and Ishikawa. We also design an degree reduction algorithm for general polynomials on binary variables, simulated on the graph coloring problem for random graphs, and compared the results with the conventional methods. The simulated results show that our new method produces reduced quadratic polynomials that contains less variables than the reduced quadratic polynomials produced by the conventional methods

    TRAO Survey of Nearby Filamentary Molecular clouds, the Universal Nursery of Stars (TRAO FUNS) I. Dynamics and Chemistry of L1478 in the California Molecular Cloud

    Full text link
    "TRAO FUNS" is a project to survey Gould Belt's clouds in molecular lines. This paper presents its first results on the central region of the California molecular cloud, L1478. We performed On-The-Fly mapping observations using the Taedeok Radio Astronomy Observatory (TRAO) 14m single dish telescope equipped with a 16 multi-beam array covering ∼\sim1.0 square degree area of this region using C18^{18}O (1-0) mainly tracing low density cloud and about 460 square arcminute area using N2_{2}H+^{+} (1-0) mainly tracing dense cores. CS (2-1) and SO (32−21)(3_{2}-2_{1}) were also used simultaneously to map ∼\sim440 square arcminute area of this region. We identified 10 filaments by applying the dendrogram technique to the C18^{18}O data-cube and 8 dense N2_{2}H+^{+} cores by using {\sc FellWalker}. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that L1478 consists of several filaments with slightly different velocities. Especially the filaments which are supercritical are found to contain dense cores detected in N2_{2}H+^{+}. Comparison of non-thermal velocity dispersions derived from C18^{18}O and N2_{2}H+^{+} for the filaments and dense cores indicates that some of dense cores share similar kinematics with those of the surrounding filaments while several dense cores have different kinematics with those of their filaments. This suggests that the formation mechanism of dense cores and filaments can be different in individual filaments depending on their morphologies and environments.Comment: 25 pages, 15 figures, accepted for publication in Ap

    Deformable Graph Transformer

    Full text link
    Transformer-based models have recently shown success in representation learning on graph-structured data beyond natural language processing and computer vision. However, the success is limited to small-scale graphs due to the drawbacks of full dot-product attention on graphs such as the quadratic complexity with respect to the number of nodes and message aggregation from enormous irrelevant nodes. To address these issues, we propose Deformable Graph Transformer (DGT) that performs sparse attention via dynamically sampled relevant nodes for efficiently handling large-scale graphs with a linear complexity in the number of nodes. Specifically, our framework first constructs multiple node sequences with various criteria to consider both structural and semantic proximity. Then, combining with our learnable Katz Positional Encodings, the sparse attention is applied to the node sequences for learning node representations with a significantly reduced computational cost. Extensive experiments demonstrate that our DGT achieves state-of-the-art performance on 7 graph benchmark datasets with 2.5 - 449 times less computational cost compared to transformer-based graph models with full attention.Comment: 16 pages, 3 figure

    Arc-to-line frame registration method for ultrasound and photoacoustic image-guided intraoperative robot-assisted laparoscopic prostatectomy

    Full text link
    Purpose: To achieve effective robot-assisted laparoscopic prostatectomy, the integration of transrectal ultrasound (TRUS) imaging system which is the most widely used imaging modelity in prostate imaging is essential. However, manual manipulation of the ultrasound transducer during the procedure will significantly interfere with the surgery. Therefore, we propose an image co-registration algorithm based on a photoacoustic marker method, where the ultrasound / photoacoustic (US/PA) images can be registered to the endoscopic camera images to ultimately enable the TRUS transducer to automatically track the surgical instrument Methods: An optimization-based algorithm is proposed to co-register the images from the two different imaging modalities. The principles of light propagation and an uncertainty in PM detection were assumed in this algorithm to improve the stability and accuracy of the algorithm. The algorithm is validated using the previously developed US/PA image-guided system with a da Vinci surgical robot. Results: The target-registration-error (TRE) is measured to evaluate the proposed algorithm. In both simulation and experimental demonstration, the proposed algorithm achieved a sub-centimeter accuracy which is acceptable in practical clinics. The result is also comparable with our previous approach, and the proposed method can be implemented with a normal white light stereo camera and doesn't require highly accurate localization of the PM. Conclusion: The proposed frame registration algorithm enabled a simple yet efficient integration of commercial US/PA imaging system into laparoscopic surgical setting by leveraging the characteristic properties of acoustic wave propagation and laser excitation, contributing to automated US/PA image-guided surgical intervention applications.Comment: 12 pages, 9 figure
    • …
    corecore