49 research outputs found
A Parametric Study on the Immunomodulatory Effects of Electroacupuncture in DNP-KLH Immunized Mice
This study was conducted to compare the effects of low frequency electroacupuncture (EA) and high frequency EA at acupoint ST36 on the production of IgE and Th1/Th2 cytokines in BALB/c mice that had been immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH), as well as to investigate the difference in the immunomodulatory effects exerted by EA stimulations at acupoint ST36 and at a non-acupoint (tail). Female BALB/c mice were divided into seven groups: normal (no treatments), IM (immunization only), ST36-PA (IM + plain acupuncture at ST36), ST36-LEA (IM + low frequency (1 Hz) EA at ST36), ST36-HEA (IM + high frequency (120 Hz) EA at ST36), NA-LEA (IM + low frequency (1 Hz) EA at non-acupoint) and NA-HEA (IM + high frequency (120 Hz) EA at non-acupoint). EA stimulation was performed daily for two weeks, and total IgE, DNP-KLH specific IgE, IL-4 and IFN-γ levels were measured at the end of the experiment. The results of this study showed that the IgE and IL-4 levels were significantly suppressed in the ST36-LEA and ST36-HEA groups, but not in the NA-LEA and NA-HEA groups. However, there was little difference in the immunomodulatory effects observed in the ST36-LEA and ST36-HEA groups. Taken together, these results suggest that EA stimulation-induced immunomodulation is not frequency dependent, but that it is acupoint specific
Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products
For steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas–solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at −0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion. © 2021, The Author(s).1
Development of a Benefit Assessment Matrix for Nanomaterials and Nano-enabled Products—Toward Safe and Sustainable by Design
Industry and scientists develop new nanomaterials and nano-enabled products to make use of the specific properties that the nanoscale can bring. However, the benefit of a nano-enabled product over a conventional product is not always a given. This paper describes our development of a Benefit Assessment Matrix (BAM) that focuses on the functional, health and environmental benefits of nanomaterials, nano-enabled manufacturing and nano-enabled products. The BAM is an Excel spreadsheet-based tool to help researchers and small and medium-sized enterprises assess these potential benefits throughout their product’s life cycle while they are still in the early phase of the innovation process. Benefit indicators were developed based on a review of the literature on the life cycles and intrinsic properties of nanomaterials, nano-enabled manufacturing and nano-enabled products. Assessing the benefits of a nano-enabled product involves a comparative approach, contrasting them against the benefits of a conventional reference product. To help users understand the reliability of the benefits, the BAM identifies the evidence of the benefit claimed. The BAM provides a different action plan for each phase of the stage–gate product innovation process. The tool’s applications and potential are presented using three case studies, focusing at different phases of the innovation process: nano-clays used in internal automobile body-panels, nano-TiO2 used in outdoor facade coatings and nano-Ag used in T-shirts. Using these cases studied, we highlight how the results from the BAM can be used to give recommendations for moving towards the concept of safe and sustainable by design in nanotechnology development
Prospective Dynamic and Probabilistic Material Flow Analysis of Graphene-Based Materials in Europe from 2004 to 2030
As industrial demand for graphene-based materials (GBMs)
grows,
more attention falls on potential environmental risks. The present
article describes a first assessment of the environmental releases
of GBMs using dynamic probabilistic material flow analysis. The model
considered all current or expected uses of GBMs from 2004 to 2030,
during which time there have already been significant changes in how
the graphene mass produced is distributed to different product categories.
Although the volume of GBM production is expected to grow exponentially
in the coming years, outflow from the consumption of products containing
GBMs shows only a slightly positive trend due to their long lifetimes
and the large in-use stock of some applications (e.g., GBM composites
used in wind turbine blades). From consumption and end-of-life phase
GBM mass flows in 2030, estimates suggest that more than 50% will
be incinerated and oxidized in waste plants, 16% will be landfilled,
12% will be exported out of Europe, and 1.4% of the annual production
will flow to the environment. Predicted release concentrations for
2030 are 1.4 ng/L in surface water and 20 μg/kg in sludge-treated
soil. This study’s results could be used for prospective environmental
risk assessments and as input for environmental fate models
Occurrence of Root Rot caused by Fusarium fujikuroi on Adzuki Bean in Korea
In July 2020, wilting symptoms were observed among adzuki bean plants (Vigna angularis var. angularis L.) in the fields in Yeosu, Korea. Infected plants showed yellowing of leaves, browning inside the stems, splitting of stem bark, and wilting. When these plants were uprooted, their roots were found to be brown. The fungal pathogens NC20-737, NC20-738, and NC20-739 were isolated from symptomatic stem and root tissues. These pathogens were identified as a Fusarium fujikuroi species complex based on their morphological characteristics. Molecular identification was performed using the DNA sequence of translation elongation factor 1 alpha and the RNA polymerase Ⅱ second largest subunit regions. The nucleotide sequences of all three isolates were similar to the F. fujikuroi reference isolates NRRL 13566 and NRRL 5538 of the National Centre for Biotechnology Information GenBank. A pathogenicity test was conducted by the soil inoculation method with cornmeal sand inoculum. Approximately 3 weeks after inoculation, symptoms were observed only in the inoculated adzuki bean seedlings. To the best of our knowledge, this is the first report of Fusarium root rot caused by F. fujikuroi in adzuki beans, both in Korea and worldwide
Particulated autologous cartilage transplantation for the treatment of osteochondral lesion of the talus: can the lesion cartilage be recycled?
Aims: Osteochondral lesions of the talus (OLT) are a common cause of disability and chronic ankle pain. Many operative treatment strategies have been introduced; however, they have their own disadvantages. Recently lesion repair using autologous cartilage chip has emerged therefore we investigated the efficacy of particulated autologous cartilage transplantation (PACT) in OLT. Methods: We retrospectively analyzed 32 consecutive symptomatic patients with OLT who underwent PACT with minimum one-year follow-up. Standard preoperative radiography and MRI were performed for all patients. Follow-up second-look arthroscopy or MRI was performed with patient consent approximately one-year postoperatively. Magnetic resonance Observation of Cartilage Repair Tissue (MOCART) score and International Cartilage Repair Society (ICRS) grades were used to evaluate the quality of the regenerated cartilage. Clinical outcomes were assessed using the pain visual analogue scale (VAS), Foot Function Index (FFI), and Foot Ankle Outcome Scale (FAOS). Results: All patients had ICRS grade IV cartilage lesions, except for one (ICRS grade III). The paired MOCART scores significantly improved from 42.5 (SD 1.53) to 63.5 (SD 22.60) (p = 0.025) in ten patients. Seven patients agreed to undergo second-look arthroscopy; 5 patients had grade I (normal) ICRS scores and two patients had grade II (nearly normal) ICRS scores. VAS, FFI, and all subscales of FAOS were significantly improved postoperatively (p ≤ 0.003). Conclusion: PACT significantly improved the clinical, radiological, and morphological outcomes of OLT. We consider this to be a safe and effective surgical method based on the short-term clinical results of this study. Cite this article: Bone Jt Open 2023;4(12):942–947
Identification of CTX-M-14 Extended-Spectrum β-Lactamase in Clinical Isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea
CTX-M-14 β-lactamase was identified in a stool isolate of Shigella sonnei and in blood isolates of Escherichia coli (one isolate) and Klebsiella pneumoniae (two isolates) from different parts of Korea. The amino acid sequence differed by one amino acid from CTX-M-9 (Ala-231→ Val) and was identical to that of β-lactamases recently found in China and Japan
Establishment of a Novel PDX Mouse Model and Evaluation of the Tumor Suppression Efficacy of Bortezomib Against Liposarcoma
The patient-derived xenograft (PDX) model has been adopted as a major tool for studying tumorigenesis and differentiation in various carcinomas. In addition, it has been used in the development of anticancer agents. PDX models have been among the most meaningful tools used to understand the role of stromal cells and vascular cells in the body, which are major factors in cancer development and the application of therapeutic agents. Also, the establishment of PDX models from liposarcoma patients is considered to be important for understanding lipomagenesis and following drugs development. For these reasons, we developed patient-derived cell (PDC) and PDX models derived from 20 liposarcoma patients. The tissues of these patients were obtained in accordance with the principles of the Samsung Medical Center's ethics policy, and cell culture and xenografting onto the mice were performed under these principles. High-throughput drug screening (HTS) was carried out using established PDCs to select candidate drugs. Among the different candidate anticancer drugs, we tested the effect of bortezomib, which was expected to inhibit MDM2 amplification. First, we confirmed that the PDCs maintained the characteristics of liposarcoma cells by assessing MDM2 amplification and CDK4 overexpression using fluorescence in situ hybridization. Analysis of short tandem repeats and an array using comparative genomic hybridization confirmed that the PDX model exhibited the same genomic profile as that of the patient. Immunohistochemistry for MDM2 and CDK4 showed that the overexpression patterns of both proteins were similar in the PDX models and the PDCs. Specifically, MDM2 amplification was observed to be significantly correlated with the successful establishment of PDX mouse models. However, CDK4 expression did not show such a correlation. Of the anticancer drugs selected through HTS, bortezomib showed a strong anticancer effect against PDC. In addition, we observed that bortezomib suppressed MDM2 expression in a dose-dependent manner. In contrast, p21 tended to elicit an increase in PDC expression. Treatment of the PDX model with bortezomib resulted in an anticancer effect similar to that seen in the PDCs. These results support that PDCs and PDX models are among the most powerful tools for the development and clinical application of anticancer drugs for the treatment of liposarcoma patients
Enhancement of Aqueous Solubility and Dissolution of Celecoxib through Phosphatidylcholine-Based Dispersion Systems Solidified with Adsorbent Carriers
This study aimed to design phosphatidylcholine (PC)-based solid dispersion (SD) systems for enhancing the apparent aqueous solubility and dissolution of celecoxib (CLC), a selective cyclooxygenase-2 inhibitor with a highly hydrophobic property. Although PC-based dispersion formulations considerably increased solubilities of CLC, the lipidic texture of PC was not appropriate as a solid dosage form for oral administration of CLC. To mask the lipidic texture of PC-based matrices, Neusilin® US2, an adsorbent material with a porous structure and large surface area widely used in the pharmaceutical industry, was employed and thereby fully powderized PC-based dispersion formulations could be fabricated. However, PC matrices containing CLC strongly adsorbed to the pores of Neusilin® US2 was not able to be rapidly released. To address this problem, different hydrophilic materials were examined to promote the release of the CLC-dispersed PC matrices from Neusilin® US2. Among tested hydrophilic materials, croscarmellose sodium was the most suitable to facilitate fast drug dissolution from Neusilin® US2 particles, showing significantly enhanced apparent aqueous solubility and dissolution behavior of CLC. Through differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy (FT-IR) analysis, a considerably reduced crystallinity of CLC dispersed in the PC-based dispersion formulations was demonstrated. The PC-based SD formulations developed in this study would be useful for improving the oral bioavailability of poorly soluble drugs such as CLC