1,135 research outputs found

    Characteristics of high efficiency current charging system for HTS magnet with solar energy

    Get PDF
    AbstractIn terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program

    Stepwise surface regeneration of electrochemical immunosensors working on biocatalyzed precipitation, Analyst 127

    Get PDF
    A new strategy of stepwise surface regeneration for electrochemical immunosensors, working on a biocatalyzed precipitation reaction, has been developed. The strategy is based on the combination of deposited product thin-film dissolution and bound-protein displacement reactions from the modified sensor surfaces. As a model system, surfaces functionalized with biotin groups and their affinity recognition/ displacement reactions with antibiotin antibody molecules were chosen and investigated for affinity-sensing and stepwise regeneration reactions

    Structural abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS)

    Get PDF
    AbstractPurposeThe aim of this study was to investigate cortical thickness and gray matter volume abnormalities in benign childhood epilepsy with centrotemporal spikes (BCECTS). We additionally assessed the effects of comorbid attention-deficit/hyperactivity (ADHD) on these abnormalities.MethodsSurface and volumetric MR imaging data of children with newly diagnosed BCECTS (n=20, 14 males) and age-matched healthy controls (n=20) were analyzed using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu). An additional comparison was performed between BCECTS children with and without ADHD (each, n=8). A group comparison was carried out using an analysis of covariance with a value of significance set as p<0.01 or p<0.05.ResultsChildren with BCECTS had significantly thicker right superior frontal, superior temporal, middle temporal, and left pars triangularis cortices. Voxel-based morphometric analysis revealed significantly larger cortical gray matter volumes of the right precuneus, left orbitofrontal, pars orbitalis, precentral gyri, and bilateral putamen and the amygdala of children with BCECTS compared to healthy controls. BCECTS patients with ADHD had significantly thicker left caudal anterior and posterior cingulate gyri and a significantly larger left pars opercularis gyral volume compared to BCECTS patients without ADHD.ConclusionChildren with BCECTS have thicker or larger gray matters in the corticostriatal circuitry at the onset of epilepsy. Comorbid ADHD is also associated with structural aberrations. These findings suggest structural disruptions of the brain network are associated with specific developmental electro-clinical syndromes

    Acute Necrotizing Encephalopathy: Diffusion MR Imaging and Localized Proton MR Spectroscopic Findings in Two Infants

    Get PDF
    In this report, we describe the findings of diffusion MR imaging and proton MR spectroscopy in two infants with acute necrotizing encephalopathy in which there was characteristic symmetrical involvement of the thalami. Diffusion MR images of the lesions showed that the observed apparent diffusion coefficient (ADC) decrease was more prominent in the first patient, who had more severe brain damage and a poorer clinical outcome, than in the second. Proton MR spectroscopy detected an increase in the glutamate/glutamine complex and mobile lipids in the first case but only a small increase of lactate in the second. Diffusion MR imaging and proton MR spectroscopy may provide useful information not only for diagnosis but also for estimating the severity and clinical outcome of acute necrotizing encephalopathy

    Stable and High-Power Calcium-Ion Batteries Enabled by Calcium Intercalation into Graphite

    Get PDF
    Calcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes. It is shown that a graphite electrode exhibits an exceptionally high rate capability up to 2 A g(-1), delivering approximate to 75% of the specific capacity at 50 mA g(-1) with full calcium intercalation in graphite corresponding to approximate to 97 mAh g(-1). Moreover, the capacity stably maintains over 200 cycles without notable cycle degradation. It is found that the calcium ions are intercalated into graphite galleries with a staging process. The intercalation mechanisms of the "calciated" graphite are elucidated using a suite of techniques including synchrotron in situ X-ray diffraction, nuclear magnetic resonance, and first-principles calculations. The versatile intercalation chemistry of graphite observed here is expected to spur the development of high-power CIBs.

    Prognostic Value of Metastatic Tumoral Caveolin-1 Expression in Patients with Resected Gastric Cancer

    Get PDF
    Objective. Caveolin-1 (Cav-1), as the main component of caveolae, has complex roles in tumourigenesis in human malignancies. We investigated Cav-1 in primary and metastatic tumor cells of gastric cancer (GC) and its association with clinical outcomes. Methods. We retrieved 145 cases of GC who had undergone curative gastrectomy. The expression levels of Cav-1 was evaluated by immunohistochemistry, and its association with clinicopathological parameters and patient survival was analyzed. Results. High expression of Cav-1 protein of the GC in the stomach and metastatic lymph node was 12.4% (18/145) and 16.5% (15/91). In the multivariate analysis, tumoral Cav-1 protein in metastatic lymph node showed prognostic significance for relapse-free survival (RFS, HR, 3.934; 95% CI, 1.882–8.224; P=0.001) and cancer-specific survival outcome (CSS, HR, 2.681; 95% CI, 1.613–8.623; P=0.002). Among the GCs with metastatic lymph node, it remained as a strong indicator of poor prognosis for RFS (HR, 3.136; 95% CI, 1.444–6.810; P=0.004) and CSS (HR, 2.509; 95% CI, 1.078–5.837; P=0.032). Conclusion. High expression of tumoral Cav-1 protein in metastatic lymph node is associated with unfavorable prognosis of curative resected GC, indicating the potential of novel prognostic markers
    corecore